Oriental motor

New 0.72° Stepper Motor and Driver Packages

RKII Series

Built-in controller type
Pulse input type

Introducing a re-invented affordable high performance stepper motor.

A highly reliable stepper motor that is too user-friendly to resist.

SAVE DDICE & ENIEDGY

- Compact size, yet low price Page 4
- Reduction power consumption and running cost ... Page 5

EASY

CONNECTION & SYSTEM

Easy wiring	Page 6
Easy selection	
2 types of drivers are available	

HIGH

PERFORMANCE & RELIABILITY

High accuracy	Page	10
Multiple step angle selections		
Various kinds of protective functions (Alarm)		

New 0.72° Stepper Motor and Driver Packages

RKII Series

Reduction of total cost.

Price

High-efficiency with Low Price

While achieving a significant improvement in motor performance, driver operations and functions, compared to conventional products, the RKII Series has a new, low price.

Conventional Model: **RK** Series ☐ 60 mm

Standard Type

RKII Series Pulse Input Type ☐ 60 mm Standard Type

• For price and lead time, please contact the nearest Oriental Motor office, or visit the Oriental Motor website.

Space Saving

Slim and Compact

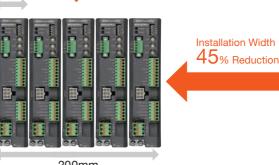
This new driver has been created by re-arranging the internal components, optimizing the usage of the size within the driver. In addition, drivers can be installed side by side, reducing a significant amount of

 When drivers are installed in contact with each other, the allowable ambient temperature range is 0 to 40°C

20mm

Multiple units can be installed in coherently with each other. Conventional Model: **RK** Series Driver

Conventional Model **RK** Series Driver


Installation Area 9405 mm² (165x57=9405)

RKII Series Driver

Installation Area 6400 mm² (160x40=6400)

RKII Series Driver

ADVANTAGE

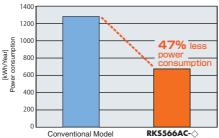
down.

ADVANTAGE

High-efficiency and costs for compact size, yet cost control board.

High Efficiency

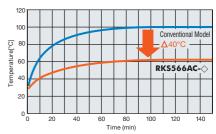
Reduces power consumption by up to 47%


By optimizing the motor material, 47% of the power consumption has been reduced. This results in the decrease of electricity and CO₂ emission. In addition, with lower heat generated by the motor, there is a lesser requirement of fans or radiation plate.

Lower Heat Generation

Continuous Operation is Achieved

By utilizing high-efficient technology, continuous operation is achieved due to the reduction of motor heat.


Power Consumption Comparison

Operating Condition
· Spin speed: 1000 r/min
· Load torque: 0.47 N·m

Operating time: 24 hours (Operation 70%, Stand-by 25%, Stop 5%) 365 days/year

Motor Surface Temperature Comparison under the Same Conditions

Power Consumption Comparison

Items	Conventional Model	RKS566AC- \diamondsuit	Comparison	
Power consumption during operation [W]	204	106	98 W	Reduced by 48%
Power consumption during stand-by [W]	14	13	1 W	Reduced by 7%
Power consumption [kWh/year]	1281	678	603 kWh/year	Reduced by 47%
CO2 emission equivalent to power consumtion * [kg/year]	533	282	251 kg/year	Reduced by 47%

*: Conversion rate: 0.416 kg/kWh

ADVANTAGE

With the maximized motor performance, it is easy to achieve high efficiency and cost savings.

ADVANTAGE

Less effort for temperature control.

Easy to wire, easy to select.

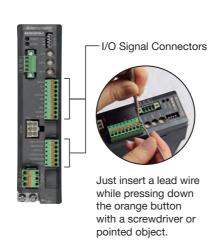
Wiring

Easy Wiring

The new I/O connector does not require a screw, eliminating the need for soldering or a special crimping tool. The motor connector can be connected easily by using a dedicated cable. This will reduce wiring time, maintenance and prevent mis-wiring.

Motor Connector Wiring

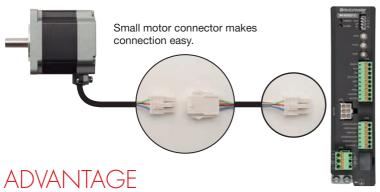
· No screw tightening


- · Wiring time reduction
- · Reduce problems caused by mis-wiring

● I/O Connector Wiring

- · No soldering
- · No crimping tools

- · Wiring time reduction
- · Less maintenance



Selection

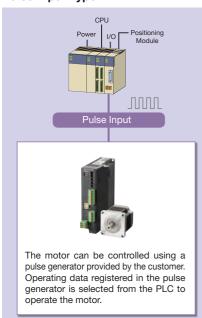
Easy Selection

Free Motor Selection Service for Customers:

Send us a motor selection inquiry via our website, fax or e-mail.

The redesigned driver is more compact and allows an installation close to other drivers. The wiring has been simplified.

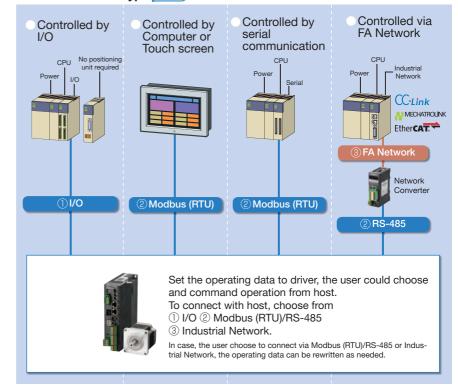
Two types of drivers are available.


Built-In Controller Type

Driver

Pulse Input Type Built-In Controller Type

Select the control method in accordance with your operation system.


Pulse Input Type

ADVANTAGE

Connects to a Wide Variety of Host Systems.

Built-In Controller Type (FLEX)

● How to connect (Example: Refer to P. 8 and P. 9)

① I/C

The function of a built-in pulse generator lets you build an operation system by connecting directly to a PLC. Since no separate pulse generator is required, the drivers of this type save space and simplify systems.

Built-In Controller (Stored Data) Type

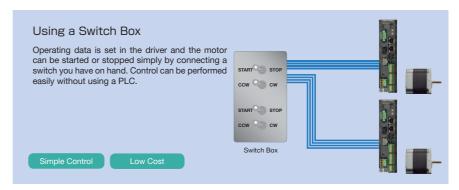
The burden on the programmable PLC is reduced because the information necessary for motor operations is built into the driver. This simplifies the system configuration for multi-axis control. Set with control module (sold separately), data setting software or RS-485 communication.

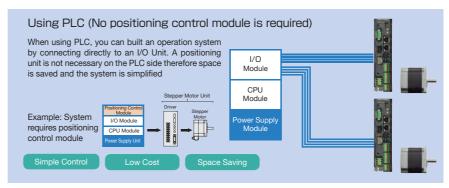
2 Modbus (RTU)/RS-485

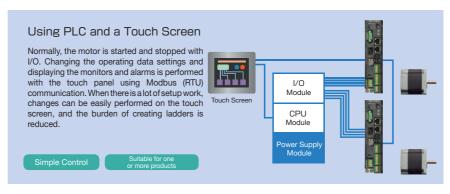
Through RS-485 communication, you can set operating data and parameters and input operation commands. A maximum of 31 drivers can be connected to one serial unit. There is also a function for simultaneously starting multiple axes. The unit also has a feature for starting multiple axes simultaneously. The unit supports the Modbus (RTU) protocol, which makes it easy to connect a PLC or similar device to the driver.

③ Industrial Network

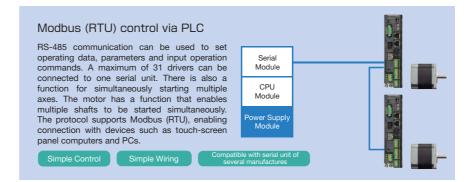
By using a Network Converter (sold separately), you can use EtherCAT communication, CC-Link communication and MECHATROLINK communication. Over these links, operating data and parameters can be set, and operation commands can be sent to the driver.

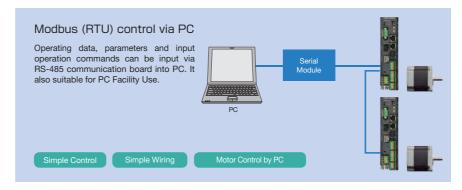




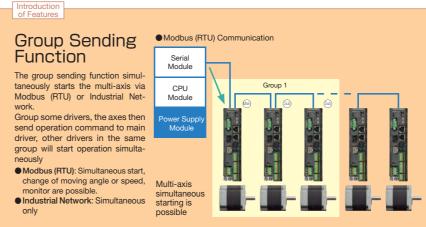

Built-In Controller Type compatible with FLEX.

Example of connection and control with the Built-In Controller Type. _______




Built-In Controller Type

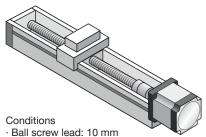
FLEX


Modbus (RTU) Control

Modbus is copyright of Schneider Automation Inc.

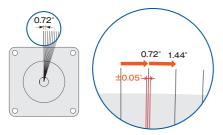
ADVANTAGE

Built-in controller type is compatible with several kinds of system or network.



Performance and function to enhance reliability.

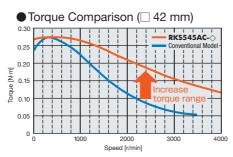
High Accuracy


High Accurate **Positioning**

Positioning accuracy of the RKII Series is ±0.05° (± 3 arc min). When the RKII Series is used with a ball screw as shown in the below drawing, the stopping accuracy becomes $\pm 1.4 \mu m$. The accuracy of the normal ground ball screw is $\pm 10 \mu m$, thus the accuracy is high enough for positioning operation.

· Motor to be used: RKII series

Stopping Accuracy ±1.4 μ m

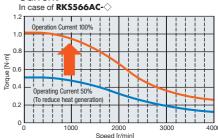

Positioning Accuracy ±0.05°

High **Torque**

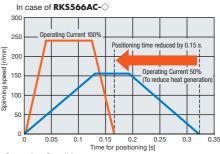
Compact and High Torque

The RKII Series is compact and produces high torque. The torque of the 42 mm frame size model has increased 50%. This contributes to a reduction in positioning and move time. The series includes 60 mm and 85 mm framesize models to cover a wide

Note that for 60 mm and 85 mm frame size models, the torque is equivalent to the conventional model.



High Efficiency


Shorten Positioning Time

With conventional stepping motors, in applications where heat generation had to be suppressed, the operating current had to be reduced, which also reduced torque. With the RKII Series, thanks to its low heat generating, highly efficient motors, the motor torque can be used fully to reduce positioning

Torque Comparison by Operating Current

Comparison of Cycle Time (between deferent current of electricity)

Operating Conditions

- Moment of load inertia: 4x10⁻⁴ [kg·m²]
- · Load torque: 0.2 [N·m]
- · Traveling Amount: 180
- Safeness rate: 2

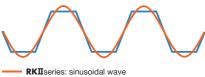
ADVANTAGE

High accuracy in positioning ±0.05°.

ADVANTAGE

Improve cycle time of machinery. positioning.

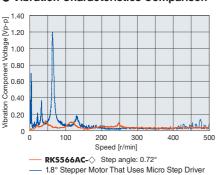
ADVANTAGE


Shorten time for

Low Vibration

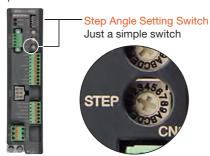
Digital controlled driver

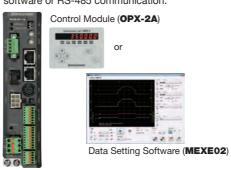
Utilizing a full-time microstepping driver controlled by a digital system improves the vibration characteristics of the 0.72° stepper motor. Current control is also done by a high specification digital CPU. This model uses PWM control instead of PAM control resulting in a sinusoidal wave form in each phase, significantly reducing vibration.


Current Waveform in Motor (theoretical figure)

Conventional products: trapezoidal wave

Current in the motor is changed from trapezoidal wave to sinusoidal wave, which resulted in less vibration.


Vibration Characteristics Comparison


Resolution

Step angle can be set easily

For pulse input type, 32 step angles can be selected. To easily upgrade from a 1.8° stepper motor, use the step angle setting switch to match the existing input pulses to the desired output speed and position. There is no software or control module reauired.

For built-in controller type, the value can be between 200 p/r - 200,000 p/r. Setting can be done by a Control module, software or RS-485 communication.

Protective Function

Various kinds of protection are installed

Many types of protection functions are integrated into the driver. A blinking LED (blink count determines alarm type) indicates when an alarm is triggered.

(Example of alarm)

- Main circuit overheating Electrolytic
- Overvoltage
- Command pulse error Overcurrent
- Undervoltage
- capacitor error
- EEPROM error CPU error
- Automatic electromagnetic brake control

ADVANTAGE

ADVANTAGE

Vibration has been Optimal resolutions Check troubles reduced drastically. can be selected.

ADVANTAGE

with protection function.

Lineup

List of drivers and motors

Driver Type	Motor Type	Frame Size	Electro- magnetic Brake	Power Input
Built-in Controller Type	Standard Type	42 mm 60 mm 85 mm	•	
	Standard Type with Encoder	42 mm 60 mm 85 mm	_	Single Phase 100-120 VAC Single Phase
	TS Geared Type PS Geared Type Harmonic Geared Type	42 mm 60 mm 90 mm	•	200-240 VAC

Driver Type	Motor Type	Frame Size	Electro- magnetic Brake	Power Input
Pulse Input Type	Standard Type	42 mm 60 mm 85 mm	•	Single Phase
	TS Geared Type PS Geared Type Harmonic Geared Type	42 mm 60 mm 90 mm	•	Single Phase 200-240 VAC

● List of Standard Type, Geared Type and Features

*We provide encoder installed model, but only for the built-in controller models.

Туре	Features	Permission Torque, Maximum Torque (N·m)	Backlash (arc min)	Basic Resolution (°/pulse)	Output Shaft Speed (r/min)
Standard Type with Encoder*	Basic model of the RK II series with Encoder For encoder installed model, functions for monitoring positioning data, detecting positioning gap are available. Resolution of encoder installed: 500 p/r.	Maximum holding torque 6.3	_	0.72	6000
TS Geared Type (Spur Gear Mechanism)	High torque (Double of existing products) A wide variety of reduction gear ratios, high-speed operations Gear ratio types 3.6, 7.2, 10, 20, 30	Permission torque, Maximum torque 25 45	10	0.024	833
PS Geared Type (Planetary Gear Mechanism)	Less backlash (comparing with existing products) High permission torque, maximum torque A various reduction gear ratio lineup make easy to detect angle Center shaft Gear ratio types 5, 7.2, 10, 25, 36, 50	Permission torque, Maximum torque 37 60	7	0.0144	600
Harmonic Geared Type (Harmonic Drive)	Longer mechanical life (Double of existing products) Higher torque (1.3 times of existing products) High accuracy in positioning High permission torque, maximum torque High reduction ratio, high resolution Center shaft Gear ratio types 50, 100	Permission torque, Maximum torque 52 107	0	0.0072	70

Note

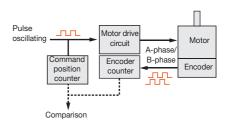
- Above values are for reference only. Values can be changed depending on setting angle or reduction ratio.
- Harmonic drive and 🥌 are registered trademarks of Harmonic drive systems Inc or trademarks.

Geared motors offered by Oriental Motor, quick reference chart for performance and price.

Standard Type with Encoder (Built-in controller type only)

Encoder installed models make it possible to monitor the present position and detect for errors.

Positioning monitor


This feature can be used to detect the position of the motor, for instance, compare the commanded position, to confirm normal operation.

Return-to-Home operation by using Z-phase signal

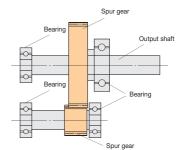
Z-phase signal can be utilized to home return operation. Using Z-phase signal, the home return point will be detected with higher accuracy than single use of the home return sensor.

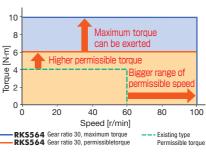
Detecting for errors

The encoder will compare command position and encoder-count, if deviation exceeds set value a STEPOUT signal will be output. An alarm signal for abnormality is also available.

TS Geared Type

This geared type is made with a simple spur gear design. The torque and speed have been improved.




Mechanism

Because of its high accuracy, this type has the same level of accuracy when compared to our tapered (**TH**) type without the added cost of tappering.

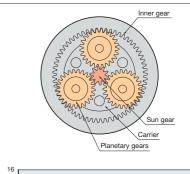
Torque and speed are improved (compare with existing type)

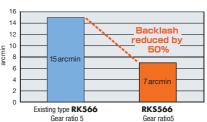
The TS geared type realizes the improvement of permissible torque and at the same time, it can exert its maximum torque. The rated input speed is increased to 3,000 r/min, and the permissible speed range of the output shaft has been significantly increased as well. The motor allows for higher torque and shortens the time for positioning, because the maximum torque range can be used for acceleration/deceleration.

PS Geared Type

The PS gear mechanism is comprised primarily of a sun gear, planetary gears and an internal tooth gear. The planetary gears design allows for higher output torque.

Mechanism


There are gears inside used to distribute torque, which allows for higher torque than a spur gear design. The PS gear uses a higher accuracy gear design which provides for a lower backlash when compared to a spur gear design.



Reduce backlash (Compare with existing type)

Optimal design of gears reduces backlash. (Except: \square 42 mm)

Positioning with higher accuracy is possible.

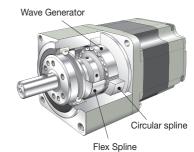
Features of New Lineup

Harmonic Geared Type

The mechanical life, permissible torque and maximum torque are improved (compare with conventional model).

Improved rated life time (Twice the length of conventional models)

The rated life time has been increased from 5,000 hours (conventional models) to 10,000 hours. (Except
42 mm)


[Condition for rated life time] : Permissible torque Torque Type of load : Uniform load Input speed : 1,500 r/min : Permissible radial load Radial load

: Permissible axial load Axial load

High torque

With more permissible and maximum torque available, more load can be handled with the same size geared motor.

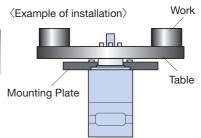
Structure



Comparison of specification

Products name	RKS564AC -HS100-◇	Conventional model
Permissible torque N·m	10	8
Maximum torque N·m	36	28
Gear ratio	10	00
Lost motion (Load torque)	0.7 arc min or less (± 0.39 N·m)	

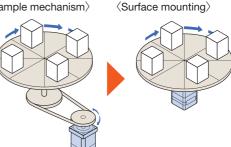
Comparison of torque characteristics


Surface Installation of load is available

This type permits installation of load directly on the rotating surface integrated with the shaft. (Except:

90 mm)

Appearance and Installation Example: This surface rotates with the shaft



Tapped holes are provides on the rotating surface for load installation

Application: Index Table

This type not only reduces the number of parts/processes, but also improves reliability. They are also suitable for operating loads that receive moment loads.

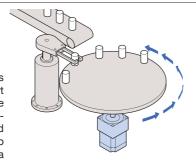
(Example mechanism)

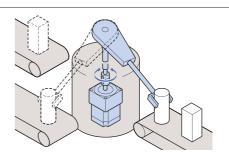
Harmonic drive and significant are registered trademarks of Harmonic Drive systems Inc or trademarks.

Advantage of geared motor

Using geared motors bring the user many advantages, such as speed reduction, high torque and high resolution.

The motor can drive a large inertial load

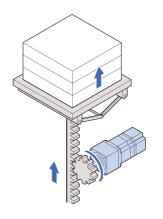

If compared with a standard motor, the geared motors can drive larger inertial loads, because it's permissible load moment of inertia increases with the square of reduction ratio.


Comparison of load moment of inertia

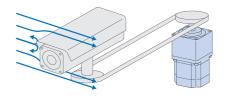
	Motor Type	Motor product name	Load moment of inertia (10 times of Rotor Inertia)	Diameter of inertial load (Thickness: 20 mm, material: Aluminum)	Speed range
	Standard Type	RKS564AC- \diamondsuit	1.6x10 ⁻⁴ kg · m²	72 mm	0 ~ 6,000 r/min
a	PS Geared Type (Gear ratio 5)	RK- S566AC-PS5-◇	67.5x10 ⁻⁴ kg · m²	187 mm	0 ~ 600 r/min

Damping characteristic at starting/stopping will be improved.

When the motor works under large inertial loads or needs to accelerate/decelerate in a short time, it is better to use the geared motor than the standard motor. Because it can reduce damping it can also increase stability. The geared motor is suitable for work that requires to position a large load (i.e. index table, arm) in a short time.

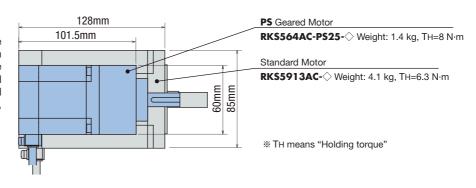


High stiffness, not twisting easily.


The geared motor has a high stiffness and it cannot be twisted easily. It is not profoundly affected by changes of load torque (compared with standard motor).

Application: Lifter

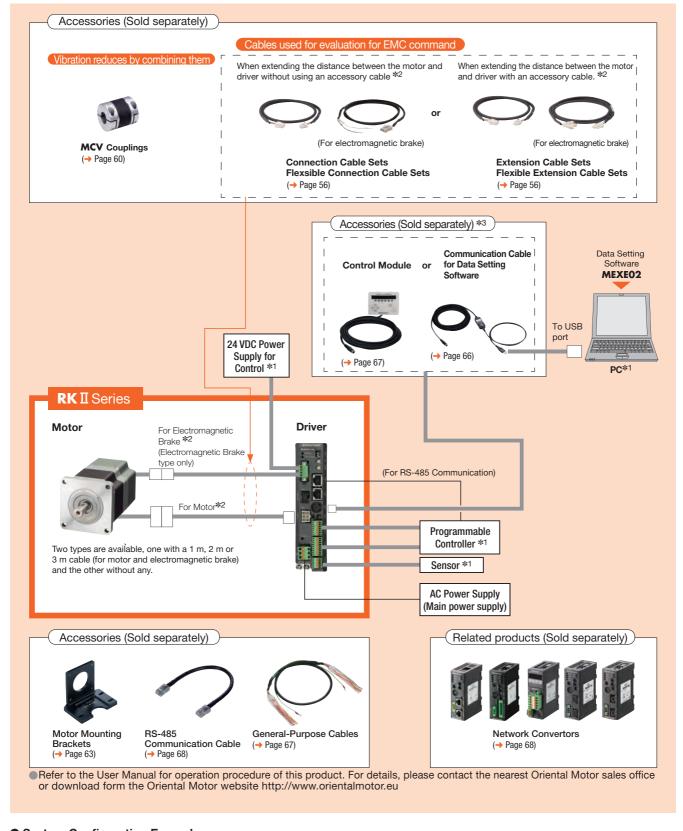
The geared motor can stop with high accuracy even for vertical applications if the load or work changes.



Application: Security Camera The motor will hold the load even if shaken by a strong wind.

Downsizing

If comparing the standard motor and the geared motor which have similar maximum holding torque, the setting angle of the geared motor is smaller than the standard motor. By comparing the two, the geared motor allows for a small area, saving space, allowing for downsizing.



System Configuration

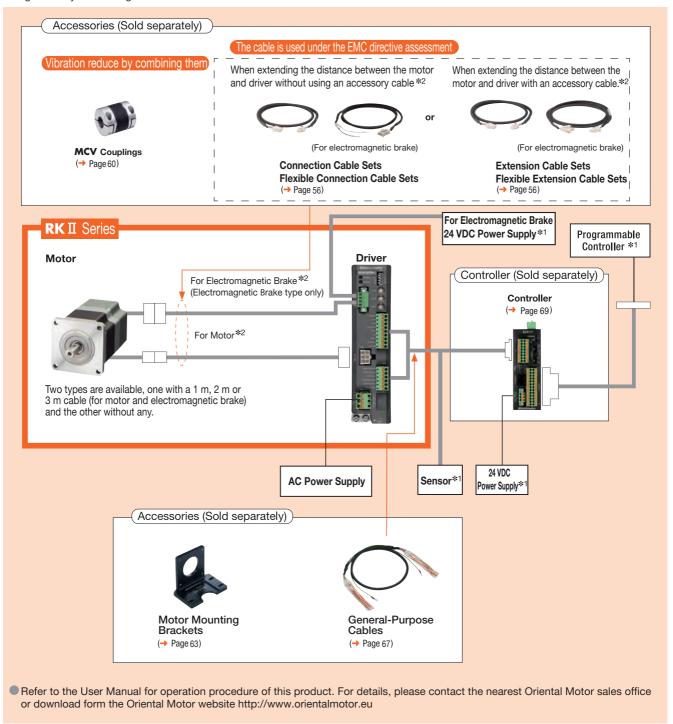
Built-In Controller Package Standard Type with Electromagnetic Brake

An example of a system configuration when used with either I/O control or RS-485 communication.

- *1 Not supplied.
- *2 Only with the type supplied with a connection cable
- *3 To be provided as necessary

System Configuration Example

DVII parios	DIVITi		Sold separately		
RKII series	+	Motor Mounting Bracket	Flexible Coupling	General-Purpose Cable (1m)	
RKS566MCD-3		PAL2P-5	MCV251010	CC16D010B-1	


The system configuration shown above is an example. Other combinations are available.

System Configuration

Pulse Input Type/Standard Type with Electromagnetic Brake A single-axis system configuration with the controller SCX11 Series.

★1 Not supplied

*2 Only the model includes connecting cable

System Configuration Example

DI/II Contra		Sold Separately			
RKII Series	+	Controller	Motor Mounting Bracket	Flexible Coupling	General-Purpose Cable (1 m)
RKS566MC-3		SCX11	PAL2P-5	MCV251010	CC16D010B-1

• The system configuration shown above is an example. Other combinations are available.

Product Number Code

RKS 5 6 4 R C D 2 - 3

1 2 3 4 5 6 7 8 1

RKS 5 6 4 M C D - HS 50 - 3

1 2 3 4 5 6 7

9 10

11)

1	Series Name	RKS : RKII series		
2	5 : 5-Phase			
3	Motor Frame Size	4: 42 mm 6: 60 mm 9: 85 mm (Motor Frame Size for Geared Type 90 mm)		
4	Motor Case Length			
5	Motor Type	A : Single shaft B : Double shaft R : Encoder Type M : Electromagnetic Brake Type		
6	Power Supply Voltage	A : Single-Phase 100-120 VAC C : Single-Phase 200-240 VAC		
7	Driver Type	D : Built-In Controller Type Blank : Pulse Input Type		
8	Serial Number			
9	Gearhead Type	Blank : Standard Type TS : TS Geared Type PS : PS Geared Type HS : Harmonic Geared Type		
10	Gear Ratio			
11)	Connecting Cable	Numeric value : Cable length (included in package) 1 : 1 m 2 : 2 m 3 : 3 m Blank : Package without cable		

Product Line

Built-In Controller Type

♦ Standard Type

Product Name (Single Shaft)

RKS543A D-♦
RKS544A D-♦
RKS545A D-♦
RKS566A D-♦
RKS569A D-♦
RKS596A D-♦
RKS599A D-♦
RKS5913A D-♦

Product Name (Double Shaft)

RK\$543B_D-♦
RK\$544B_D-♦
RK\$545B_D-♦
RK\$566B_D-♦
RK\$566B_D-♦
RK\$596B_D-♦
RK\$599B_D-♦
RK\$599B_D-♦
RK\$599B_D-♦

Standard Type with Electromagnetic Brake

Product Name

RK\$543M D-♦
RK\$544M D-♦
RK\$54545M D-♦
RK\$566M D-♦
RK\$566M D-♦
RK\$596M D-♦
RK\$599M D-♦
RK\$599M D-♦

Standard Type with Encoder

Product Name
RK\$543R_D2-\(\circ\)
RKS544R <u></u> D2-♦
RKS545RD2-
RKS564R \square D2- \Diamond
RKS566R <u></u> D2-♦
RKS569R□D2-♦
RKS596R \square D2- \Diamond
RKS599R <u></u> D2-♦
RKS5913R□D2-♦

Product Name (Single Shaft) RKS543A D-TS3.6-♦ RKS543A_D-TS7.2-♦ RKS543AD-TS10-RKS543A D-TS20-♦ RKS543A D-TS30-\(\triangle\) RKS564A D-TS3.6-\(\triangle\) RKS564A_D-TS7.2-RKS564AD-TS10-RKS564A_D-TS20-RKS564AD-TS30-RKS596A_D-TS3.6-RKS596A_D-TS7.2-♦ RKS596AD-TS10-RKS596A_D-TS20-RKS596AD-TS30-

Product Name (Double Shaft) RKS543B D-TS3.6-♦ RK\$543B_D-T\$7.2-\(\triangle\) RKS543B_D-TS10-RKS543B D-TS20-RKS543B D-TS30-RKS564B D-TS3.6-RKS564B D-TS7.2-RKS564B D-TS10-RK\$564B_D-T\$20-♦ RKS564B D-TS30-RKS596B_D-TS3.6-♦ RK\$596B_D-T\$7.2-\(\triangle\) RKS596B D-TS10-♦ RKS596B_D-TS20-♦ RKS596B D-TS30-♦

Product Name		
(Single Shaft)		
RK\$543M□D-T\$3.6-♦		
RK\$543M <u></u> D-T\$7.2-♦		
RKS543MD-TS10-		
RKS543M□D-TS20-♦		
RKS543M_D-TS30-		
RKS564M [□] D-TS3.6-♦		
RK\$564M <u></u> D-T\$7.2-♦		
RKS564MD-TS10-		
RKS564M <u></u> D-TS20-♦		
RKS564MD-TS30-		
RK\$596M_D-T\$3.6-♦		
RKS596M <u></u> D-TS7.2-♦		
RKS596M□D-TS10-♦		
RKS596M_D-TS20-		
RKS596MD-TS30-		

Note

[●] Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box \bigcirc is located within the product name.

Oriental Motor Corp. provide user's manual for this product. For more detail, please contact to our branch, sales office or the user can download it from our website. http://www.orientalmotor.eu

[•] The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, please purchase connection cable separately or choose the package come with the connection cable (The package includes a connection cable).

◇PS Geared Type

Product Name (Single Shaft)
RKS545A D-PS5-♦
RKS545A D-PS7.2-♦
RK\$545A D-P\$10-♦
RKS543A <u></u> D-PS25-♦
RKS543A <u>D</u> -PS36-♦
RKS543AD-PS50-
RKS566AD-PS5-♦
RK\$566A_D-P\$7.2-\(\triangle\)
RKS566A_D-PS10-♦
RKS564A_D-PS25-♦
RKS564A <u></u> D-PS36-♦
RKS564AD-PS50-
RKS599A□D-PS5-♦
RKS599A <u></u> D-PS7.2-♦
RKS599A_D-PS10-♦
RKS596A <u></u> D-PS25-♦
RKS596A_D-PS36-♦

Product Name (Double Shaft)

(Double Shaft)		
RKS545B□D-PS5-♦		
RKS545B_D-PS7.2-\(\triangle\)		
RKS545B□D-PS10-♦		
RKS543B_D-PS25-♦		
RKS543B_D-PS36-♦		
RKS543B□D-PS50-♦		
RKS566BD-PS5-		
RK\$566B_D-P\$7.2-\(\triangle\)		
RKS566BD-PS10-		
RKS564B_D-PS25-♦		
RKS564B□D-PS36-♦		
RKS564B□D-PS50-♦		
RKS599B D-PS5-		

RKS599B D-PS10-◇ RKS599B D-PS10-◇ RKS596B D-PS25-◇ RKS596B D-PS36-◇

RKS596BD-PS50-

◇ PS Geared Type with Electromagnetic Brake

Product Name	
(Single Shaft)	
, 5	
RKS545M□D-PS5-♦	
RKS545M <u></u> D-PS7.2-♦	
RKS545M□D-PS10-♦	
RKS543M <u></u> D-PS25-♦	
RKS543M □ D-PS36-♦	
RKS543MD-PS50-	
RKS566M D-PS5-	
RKS566M_D-PS7.2-\(\triangle\)	
RKS566MD-PS10-	
RKS564M_D-PS25- \Diamond	
RKS564M <u></u> D-PS36-♦	
RKS564M D-PS50-	
RKS599M□D-PS5-♦	
RKS599M_D-PS7.2-♦	
RKS599M_D-PS10-♦	
RKS596M_D-PS25- \Diamond	
RKS596M□D-PS36-♦	
RKS596MD-PS50-	

♦ Harmonic Geared Type

RKS596AD-PS50-

Product Name	
(Single Shaft)	
RKS543A D-HS50-♦	
RKS543A <u></u> D-HS100-♦	
RKS564AD-HS50-	
RKS564A D-HS100-	
RKS596A□D-HS50-♦	
RKS596A D-HS100-	

Product Name (Double Shaft)

(Bodbio Gridity		
RKS543B <u></u> D-HS50-♦		
RKS543B □ D-HS100-♦		
RK\$564B <u></u> D-H\$50-♦		
RK\$564B□D-H\$100-♦		
RKS596B_D-HS50-♦		
RK\$596B_D-H\$100-\(\)		

♦ Harmonic Geared Type with Electromagnetic Brake

Product Name		
ī	RKS543M_D-HS50-♦	
ı	RKS543M_D-HS100-♦	
ī	RKS564M_D-HS50-♦	
ı	RK\$564M_D-H\$100-♦	
ī	RKS596MD-HS50-♦	
⅃	RKS596M D-HS100-	

Pulse Input TypeStandard Type

Product Name
(Single Shaft)

(Single Shaft)
RK\$543A □ -♦
RK\$544A <u></u> ♦
RK\$545A <u></u> ♦
RK\$564A <u></u> ♦
RKS566A□-♦
RK\$569A <u></u> ♦
RKS596A□-◇
RK\$599A <u></u> ♦
RK\$5913A□-♦

Product Name (Double Shaft)

(Double Shart)		
RK\$543B□-♦		
RK\$544B <u></u> ♦		
RK\$545B □ -♦		
RK\$564B □ -♦		
RK\$566B <u></u> -♦		
RK\$569B <u></u> ♦		
RK\$596B □ -♦		
RK\$599B <u></u> ♦		
RK\$5913B □ -♦		

♦ Standard Type with Electromagnetic Brake

Product Name		
RKS543M □ -♦		
RKS544M <u></u> ♦		
RKS545M □ -♦		
RK\$564M <u></u> ♦		
RKS566M <u></u> ♦		
RKS569M <u></u> ♦		
RK\$596M □ -♦		
RKS599M <u></u> ♦		
RKS5913M <u></u> ♦		

Note

[■] Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ⓒ is located within the product name. Oriental Motor Corp. provide user's manual for this product. For more detail, please contact to our branch, sales office or the user can download it from our website. http://www.orientalmotor.eu

[•] The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, please purchase connection cable separately or choose the package come with the connection cable (The package includes a connection cable).

♦ TS Geared Type

Product Name (Single Shaft)	Product Name (Double Shaft)
RKS543A□-TS3.6-♦	RK\$543B □ -T\$3.6-♦
RKS543A <u></u> -TS7.2-♦	RKS543B □ -TS7.2-♦
RKS543A <u></u> -TS10-♦	RKS543B <u></u> -TS10-♦
RKS543A <u></u> -TS20-♦	RKS543B <u></u> -TS20-♦
RKS543A□-TS30-♦	_RK\$543BT\$30-♦
RKS564A□-TS3.6-♦	RKS564B □ -TS3.6-♦
RKS564A <u></u> -TS7.2-♦	RK\$564B <u></u> -T\$7.2-♦
RKS564A <u></u> -TS10-♦	RKS564B <u></u> -TS10-♦
RKS564A <u></u> -TS20-♦	RK\$564B <u></u> -T\$20-♦
RKS564A <u></u> -TS30-♦	RKS564B □ -TS30-♦
RKS596A <u></u> -TS3.6-♦	RKS596B <u></u> -TS3.6-♦
RKS596A—-TS7.2-♦	RKS596B □ -TS 7.2 -♦
RKS596A <u></u> -TS10-♦	RKS596B <u></u> -TS10-♦
RKS596A <u></u> -TS20-♦	RKS596B □ -TS20-♦
RKS596A <u></u> -TS30-♦	RKS596B <u></u> -TS30-♦

♦ TS Geared Type with Electromagnetic Brake

Product Name
(Single Shaft)
(Single Shart)
RK\$543M □ -T\$3.6-♦
RKS543M □ -TS7.2-♦
RKS543M <u></u> -TS10-♦
RKS543M □ -TS20-♦
RKS543M□-TS30-♦
RK\$564M□-T\$3.6-♦
RK\$564M <u></u> -T\$7.2-♦
RK\$564M □ -T\$10-♦
RKS564M <u></u> -TS20-♦
RKS564M □ -TS30-♦
RKS596M□-TS3.6-♦
RK\$596M□-T\$7.2-♦
RK\$596M <u>□</u> -T\$10-♦
RKS596M □ -TS20-♦
RKS596M <u></u> -TS30-♦

OPS Geared Type

◇PS Geared Type	
Product Name (Single Shaft)	Product Name (Double Shaft)
RK\$545A □ -P\$5-♦	RK\$545B □ -P\$5-♦
RKS545A □ -PS7.2-♦	RKS545B □ -PS7.2-◇
RKS545A <u></u> -PS10-♦	RKS545B <u></u> -PS10-♦
RKS543A □ -PS25-♦	RKS543B □ -PS25-♦
RKS543A□-PS36-♦	RKS543B□-PS36-◇
RKS543A <u></u> -PS50-♦	RKS543B □ -PS50-♦
RKS566A□-PS5-♦	RKS566B -PS5-
RKS566A <u></u> -PS7.2-♦	RKS566B <u></u> -PS7.2-♦
RKS566A-PS10-♦	RKS566B □ -PS10-♦
RKS564A <u></u> -PS25-♦	RK\$564B <u></u> -P\$25-♦
RKS564A <u></u> -PS36-♦	RK\$564B □ -P\$36-♦
RKS564A□-PS50-♦	RK\$564B□-P\$50-♦
RKS599A <u></u> -PS5-♦	RK\$599B □ -P\$5-♦
RKS599A □ -PS7.2-♦	RKS599B □ -PS7.2-♦
RKS599A <u></u> -PS10-♦	RK\$599B <u></u> -P\$10-♦
RKS596A <u></u> -PS25-♦	RKS596B □ -PS25-♦
RKS596A □ -PS36-♦	RKS596B □ -PS36-♦
RKS596A <u></u> -PS50-♦	RK\$596B □ -P\$50-♦

◇PS Geared Type with Electromagnetic Brake

RKS545M	
RK\$545MP\$5-\> RK\$545MP\$7.2-\> RK\$545MP\$10-\> RK\$543MP\$25-\> RK\$543MP\$36-\> RK\$543MP\$50-\> RK\$566MP\$10-\> RK\$566MP\$10-\> RK\$564MP\$10-\> RK\$564MP\$10-\> RK\$564MP\$10-\> RK\$564MP\$10-\> RK\$564MP\$10-\> RK\$564MP\$10-\> RK\$599MP\$10-\>	Product Name
RKS545M-PS7.2-\(\circ\) RKS545M-PS10-\(\circ\) RKS543M-PS25-\(\circ\) RKS543M-PS36-\(\circ\) RKS543M-PS50-\(\circ\) RKS566M-PS7.2-\(\circ\) RKS566M-PS10-\(\circ\) RKS564M-PS36-\(\circ\) RKS564M-PS36-\(\circ\) RKS564M-PS50-\(\circ\) RKS599M-PS5-\(\circ\) RKS599M-PS7.2-\(\circ\) RKS599M-PS7.2-\(\circ\) RKS599M-PS36-\(\circ\)	(Single Shaft)
RK\$545M_P\$10-\(\) RK\$543M_P\$25-\(\) RK\$543M_P\$36-\(\) RK\$543M_P\$36-\(\) RK\$543M_P\$50-\(\) RK\$566M_P\$57-2-\(\) RK\$566M_P\$10-\(\) RK\$564M_P\$25-\(\) RK\$564M_P\$36-\(\) RK\$564M_P\$50-\(\) RK\$599M_P\$57-2-\(\) RK\$599M_P\$7.2-\(\) RK\$599M_P\$7.2-\(\) RK\$599M_P\$7.3-\(\) RK\$599M_P\$7.3-\(\) RK\$599M_P\$7.3-\(\) RK\$599M_P\$7.3-\(\) RK\$599M_P\$7.3-\(\) RK\$599M_P\$7.3-\(\) RK\$599M_P\$7.3-\(\)	RKS545M□-PS5-♦
RK\$543M -P\$25-\\ RK\$543M -P\$36-\\ RK\$543M -P\$36-\\ RK\$543M -P\$50-\\ RK\$566M -P\$5-\\ RK\$566M -P\$10-\\ RK\$566M -P\$10-\\ RK\$564M -P\$36-\\ RK\$564M -P\$50-\\ RK\$564M -P\$50-\\ RK\$599M -P\$5-\\ RK\$599M -P\$5-\\ RK\$599M -P\$36-\\ RK\$599M -P\$36-\\ RK\$599M -P\$36-\\ RK\$596M -P\$36-\\ RK\$596M -P\$36-\\	RKS545M□-PS7.2-♦
RK\$543M -P\$36-\(\) RK\$543M -P\$50-\(\) RK\$566M -P\$5-\(\) RK\$566M -P\$7.2-\(\) RK\$566M -P\$10-\(\) RK\$564M -P\$36-\(\) RK\$564M -P\$36-\(\) RK\$564M -P\$50-\(\) RK\$599M -P\$5-\(\) RK\$599M -P\$5-\(\) RK\$599M -P\$36-\(\) RK\$599M -P\$36-\(\) RK\$596M -P\$36-\(\)	RKS545MPS10-\(\triangle\)
RK\$543M-P\$50-\(\rightarrow\) RK\$566M-P\$5-\(\rightarrow\) RK\$566M-P\$10-\(\rightarrow\) RK\$566M-P\$10-\(\rightarrow\) RK\$564M-P\$36-\(\rightarrow\) RK\$564M-P\$50-\(\rightarrow\) RK\$599M-P\$5-\(\rightarrow\) RK\$599M-P\$10-\(\rightarrow\) RK\$596M-P\$36-\(\rightarrow\)	RKS543M □ -PS25-♦
RK\$566MP\$5-\(\times\) RK\$566MP\$5-\(\times\) RK\$566MP\$10-\(\times\) RK\$566MP\$10-\(\times\) RK\$564MP\$36-\(\times\) RK\$564MP\$50-\(\times\) RK\$599MP\$5-\(\times\) RK\$599MP\$10-\(\times\) RK\$596MP\$36-\(\times\)	RKS543MT-PS36-
RKS566M-PS7.2-◇ RKS566M-PS10-◇ RKS564M-PS25-◇ RKS564M-PS36-◇ RKS564M-PS50-◇ RKS599M-PS5-◇ RKS599M-PS7.2-◇ RKS599M-PS10-◇ RKS596M-PS36-◇	RKS543MPS50-
RK\$566M_P\$10-\(\rightarrow\) RK\$564M_P\$25-\(\rightarrow\) RK\$564M_P\$36-\(\rightarrow\) RK\$564M_P\$50-\(\rightarrow\) RK\$599M_P\$5-\(\rightarrow\) RK\$599M_P\$7.2-\(\rightarrow\) RK\$599M_P\$10-\(\rightarrow\) RK\$596M_P\$36-\(\rightarrow\)	RKS566M-PS5-
RK\$564MP\$25-\\ RK\$564MP\$36-\\ RK\$564MP\$36-\\ RK\$564MP\$50-\\ RK\$599MP\$5-\\ RK\$599MP\$10-\\ RK\$599MP\$10-\\ RK\$596MP\$36-\\ RK\$596MP\$36-\\	RKS566M <u></u> -PS7.2-♦
RK\$564MP\$36-\(\rightarrow\) RK\$564MP\$50-\(\rightarrow\) RK\$599MP\$5-\(\rightarrow\) RK\$599MP\$10-\(\rightarrow\) RK\$596MP\$25-\(\rightarrow\) RK\$596MP\$36-\(\rightarrow\)	RKS566M-PS10-
RK\$564M -P\$50-\(\) RK\$599M -P\$5-\(\) RK\$599M -P\$7.2-\(\) RK\$599M -P\$10-\(\) RK\$596M -P\$25-\(\) RK\$596M -P\$36-\(\)	RK\$564MP\$25-\
RKS599M□-PS5-◇ RKS599M□-PS7.2-◇ RKS599M□-PS10-◇ RKS596M□-PS25-◇ RKS596M□-PS36-◇	RK\$564MP\$36-\
RKS599M—PS7.2-\> RKS599M—PS10-\> RKS596M—PS25-\> RKS596M—PS36-\>	RKS564M PS50-
RKS599MPS10-\(\times\) RKS596MPS25-\(\times\) RKS596MPS36-\(\times\)	RKS599M <u></u> -PS5-♦
RKS596M—-PS25- \diamondsuit	RKS599M □ -PS7.2-♦
RKS596M□-PS36-♦	RKS599M <u></u> -PS10-♦
	RKS596M—-PS25- \Diamond
RKS596MII-PS50-	111100701111111111111111111111111111111
	RKS596MPS50-

♦ Harmonic Geared Type

Product Name (Single Shaft)
RKS543A -HS50-♦
RKS564A -HS50-
RKS564A -HS100-♦ RKS596A -HS50-♦
RKS596AHS100-

	Product Name
	(Double Shaft)
DIC	CEAOD LICEO A
	S543B □ -HS50-♦
RK	\$543B <u> </u> -H\$100-♦
RK	\$564B □ -H\$50-♦
RK	\$564B <u> </u> -H\$100-♦
RK	S596B□-HS50-♦
DV	S596B□-HS100-♦

♦ Harmonic Geared Type with Electromagnetic Brake

Product Name
RKS543M□-HS50-♦
RKS543M <u></u> -HS100-♦
RKS564M□-HS50-♦
RKS564MHS100-
RKS596M□-HS50-♦
RKS596M □ -HS100-♦

Note

[■] Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box 📃 is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box 🛇 is located within the product name.

Oriental Motor Corp. provide user's manual for this product. For more detail, please contact to our branch, sales office or the user can download it from our website. http://www.orientalmotor.eu

[•] The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, please purchase connection cable separately or choose the package come with the connection cable (The package includes a connection cable).

Standard Type Frame Size 42 mm, 60 mm Standard Type with Electromagnetic Brake Frame Size 42 mm, 60 mm Standard Type with Encoder Frame Size 42 mm, 60 mm

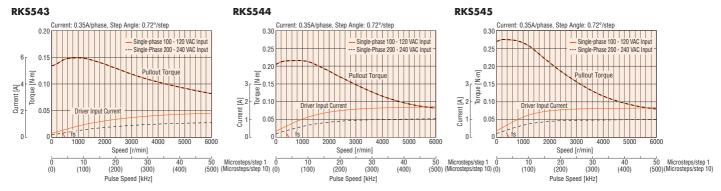
Specifications RoHS

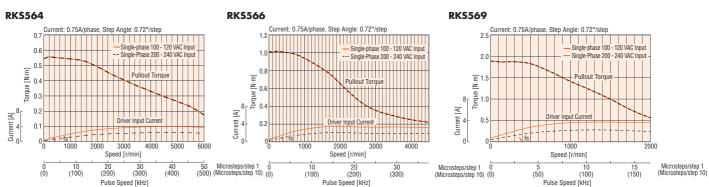
₽30 €

Droduct	Nama	Built-In Controller Type		RKS543□ DIII-♦	RKS544□□DIII-♦	RKS545□□DIII-♦	RKS564□ DIII-♦	RKS566□ DIII-♦	RK\$569□ □ D □ -♦	
Product Name		Pulse Input Type		RKS543□ <u>-</u> -♦	RK\$544□ <u>-</u> -♦	RK\$545□ <u>-</u> -♦	RK\$564□ <u>-</u> -♦	RK\$566□ <u>-</u> -♦	RKS569□ <u>-</u> -♦	
Maximum Holdin	ig Torque		N⋅m	0.14	0.21	0.27	0.52	0.96	1.77	
Holding Torque a	at Motor	Power ON	N⋅m	0.07	0.10	0.13	0.26	0.48	0.88	
Standstill		Electromagnetic	Brake N·m	0.07	0.10	0.13	0.26	0.48	0.88	
Rotor Inertia			J∶kg·m ²	30×10 ⁻⁷ [45×10 ⁻⁷]*1 (31×10 ⁻⁷)*2	47×10 ⁻⁷ [62×10 ⁻⁷]*1 (48×10 ⁻⁷)*2	64×10 ⁻⁷ [79×10 ⁻⁷]*1 (65×10 ⁻⁷)*2	160×10 ⁻⁷ [320×10 ⁻⁷]*1 (160×10 ⁻⁷)*2	270×10 ⁻⁷ [430×10 ⁻⁷]*1 (270×10 ⁻⁷)*2	540×10 ⁻⁷ [700×10 ⁻⁷]*1 (540×10 ⁻⁷)*2	
Rated Current			A / Phase	0.35 0.75						
Basic Step Angle					0.72°					
Dannar Committee	Voltage / Freq	requency		Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz						
Power Supply Input	Input Current	Single-Phase 1	00-120 VAC	2.1	1.9	1.9	4.0	3.8	4.0	
прис	Α	Single-Phase 2	200-240 VAC	1.3	1.2	1.2	2.4	2.4	2.5	
Excitation Mode	Excitation Mode				Microstep					
Control Power Si	Control Power Supply*3			24 VDC±5% 0.2 A						
Electromagnetic	Brake*4	Power Supply I	nput	24 VDC±5%*5 0.08 A 24 VDC±5%*5 0.25 A				1		

- Definition → Refer to page 22
 For Built-in Controller package, either **A** (single shaft), **B** (double shaft), **M** (electromagnetic brake) or **R** (encoder) indicating the configuration is entered where the box □ is located within the product nam
- is located within the product name.

 For Pulse Input package, either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box \square is located within


Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🔲 is located within the product name. For encoder type, 2 will be entered where is located within the product name.


A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *2 The values inside the brackets () represent the specification for the encoder type.

*3 For Built-in Controller package, the control power supply is required.

*4 For pulse input package, a separate power supply for electromagnetic brakes is required.
*5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Speed -Torque Characteristics fs: Maximum Starting Frequency

For the Encoder type, in order to protect encoder, be sure to keep the temperature of the motor case under 85°C.

Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.

Standard Type Frame Size 85 mm

Standard Type with Electromagnetic Brake Frame Size 85 mm Standard Type with Encoder Frame Size 85 mm

Specifications (RoHS)

c \$12°us € €

Droduot	Nomo	Built-In Controller Type	RK\$596□ <mark>□</mark> D □ -♦	RK\$599□ <mark>□</mark> D □ -♦	RKS5913□ <mark>□</mark> D Ⅲ -♦	
Product Name		Pulse Input Type	RKS596□	RKS599□ <mark>□</mark> -♦	RKS5913□	
Maximum Holdir	ng Torque	N⋅m	2.1	4.1	6.3	
Holding Torque	at Motor	Power ON N·m	1.05	2.05	3.15	
Standstill		Electromagnetic Brake N·m	1.05	2.05	3.15	
Rotor Inertia		$J:kg{\cdot}m^2$	1100×10 ⁻⁷ [2200×10 ⁻⁷]*1 (1100×10 ⁻⁷)*2	[2200×10 ⁻⁷]*1 [3300×10 ⁻⁷]*1		
Rated Current		A / Phase		0.75		
Basic Step Angle	Э			0.72°		
Danier Consili	Voltage / Frequ	uency	Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz			
Power Supply Input	Input Current	Single-Phase 100-120 VAC	3.6	3.5	3.5	
iiiput	Α	Single-Phase 200-240 VAC	2.1	2.2	2.2	
Excitation Mode Microstep						
Control Power S	upply*3		24 VDC±5% 0.2 A			
Electromagnetic	Brake*4	Power Supply Input		24 VDC±5%*5 0.42 A	·	

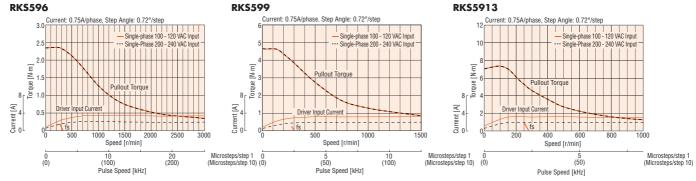
Definition → Refer to the list in following box.

For Built-in Controller package, either A (single shaft), B (double shaft), M (electromagnetic brake) or R (encoder) indicating the configuration is entered where the box 🗌

For Pulse Input package, either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box \square is located within the product name

Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📙 is located within the product name.

For encoder type, 2 will be entered where \blacksquare is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name.


*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.
*2 The values inside the brackets () represent the specification for the encoder type.

*3 For Built-in Controller package, the control power supply is required

*4 For pulse input package, a separate power supply for electromagnetic brakes is required.

*5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Speed -Torque Characteristics fs: Maximum Starting Frequency

Note

Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor

For the Encoder type, in order to protect encoder, be sure to keep the temperature of the motor case under 85°C.

[When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

Definition

Maximum Holding Torque : Maximum Holding Torque (holding power) while motor standstill (power supplied at the Rated Current). Permissible Torque : Maximum Torque load applied to Gear Output Shaft Maximum Torque : Maximum Torque load applied to Gear Output Shaft when up/reduce the speed (i.e., start-up or shut-down of Load Inertia). : Holding Torque under Automatic Current Cutback function is operated. Holding Torque at Power ON Motor Standstill Electromagnetic Brake: Static friction torque generated by Electromagnetic Brake at motor standstill. (Power Off Activated Type Electromagnetic Brake)

TS Geared Type Frame Size 42 mm

TS Geared Type with Electromagnetic Brake Frame Size 42 mm

Specifications (RoHS)

₽1°us (€

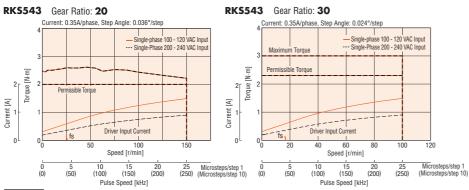
Built-In Controller Type	RKS543□	RKS543□ □D-TS7.2-♦	RKS543□ D-TS10-♦	RKS543□ D-TS20-♦	RKS543□		
Pulse Input Type	RKS543□ -TS3.6-♦	RKS543□ -TS7.2-♦	RKS543□ -TS10-♦	RKS543□ -TS20-♦	RKS543□ -TS30-♦		
e N·m	0.5	1	1.4	2	2.3		
$J: kg {\cdot} m^2$		30×10 ^{.7} [45×10 ^{.7}]*1					
A / Phase			0.35				
	0.2°	0.1°	0.072°	0.036°	0.024°		
	3.6	7.2	10	20	30		
N·m	0.65	1.2	1.7	2	2.3		
N·m	0.85	1.6	2	3	3		
N N·m	0.26	0.53	0.74	1.48	2.2		
nagnetic Brake N·m	0.26	0.53	0.74	1.48	2.2		
e r/min	0~833	0~416	0~300	0~150	0~100		
arc min	45(0.75°) 25(0.42°) 15(0.25°)						
/ Frequency		Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz					
Single-Phase 100-120 VAC			2.1				
t A Single-Phase 200-240 VAC		1.3					
	Microstep						
	24 VDC±5% 0.2 A						
Power Supply Input		24 VDC±5%*5 0.08 A					
	Pulse Input Type e N·m J: kg·m² A / Phase N·m N·m N·m N·m N·m arc min / Frequency Single-Phase 100-120 VAC t A Single-Phase 200-240 VAC	Pulse Input Type N·m 0.5 J: kg·m² A / Phase 0.2° 3.6 N·m 0.65 N·m 0.85 N·m 0.85 N·m 0.26 nagnetic Brake r/min 0~833 arc min / Frequency Single-Phase 100-120 VAC t A Single-Phase 200-240 VAC	Pulse Input Type e	Pulse Input Type RK5543□ T53.6-◊ RK5543□ T57.2-◊ RK5543□ T510-◊ e N·m 0.5 1 1.4 J : kg·m² A / Phase 0.35 0.2° 0.1° 0.072° 3.6 7.2 10 N·m 0.65 1.2 1.7 N·m 0.85 1.6 2 ON N·m 0.26 0.53 0.74 nagnetic Brake N·m 0.26 0.53 0.74 nagnetic Brake </td <td>Pulse Input Type RK\$543 □ -T\$3.6-◊ RK\$543 □ -T\$7.2-◊ RK\$543 □ -T\$10-◊ RK\$543 □ -T\$10-◊ RK\$543 □ -T\$10-◊ RK\$543 □ -T\$20-◊ RK\$543 □ -T\$20</td>	Pulse Input Type RK\$543 □ -T\$3.6-◊ RK\$543 □ -T\$7.2-◊ RK\$543 □ -T\$10-◊ RK\$543 □ -T\$10-◊ RK\$543 □ -T\$10-◊ RK\$543 □ -T\$20-◊ RK\$543 □ -T\$20		

Definition → Refer to page 22

● Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box □ is located within the product name.

Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name. A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name.


*1 The values inside the brackets [] represent the specification for the electromagnetic brake type.


*2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor. *3 For Built-in Controller package, the control power supply is required.

*4 For pulse input package, a separate power supply for electromagnetic brakes is required.

*5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Speed -Torque Characteristics fs: Maximum Starting Frequency

Note

Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case

[When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

TS Geared Type Frame Size 60 mm

TS Geared Type with Electromagnetic Brake Frame Size 60 mm

■ Specifications (RoHS)

c**71**3 €

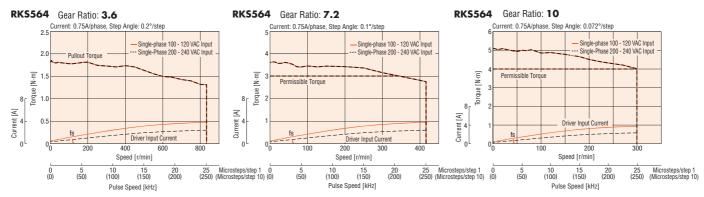
Product Nar	mo	Built-In Controller Type	RKS564□ D-TS3.6- ♦	RKS564□ □D-TS7.2-♦	RKS564□	RKS564□	RKS564□		
Floudel Name		Pulse Input Type	RKS564□ <u></u> -TS3.6-◊	RKS564□	RKS564□ -TS10-♦	RKS564□ -TS20-♦	RKS564□		
Maximum Holding	Torque	N⋅m	1.8	3	4	5	6		
Rotor Inertia		J∶kg⋅m²		160×10 ^{.7} [320×10 ^{.7}] * 1					
Rated Current		A / Phase			0.75				
Basic Step Angle			0.2°	0.1°	0.072°	0.036°	0.024°		
Gear Ratio			3.6	7.2	10	20	30		
Permissible Torque	e * 2	N·m	1.8	3	4	5	6		
Maximum Torque*	\$ 2	N⋅m	2.5	4.5	6	8	10		
Holding Torque at Po	ower ON	N·m	1	2	2.9	5	6		
		netic Brake N·m	1	2	2.9	5	6		
Permissible Speed	Range	r/min	0~833	0~416	0~300	0~150	0~100		
Backlash		arc min	35(0.59°)	15(0	.25°)	10(0	1.17°)		
Vo	oltage / Fre	equency	Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz						
Power Supply Input	Input	Single-Phase 100-120 VAC			4.0				
C	Current A	Single-Phase 200-240 VAC			2.4				
Excitation Mode			Microstep						
Control Power Sup	ply*3		24 VDC±5% 0.2 A						
Electromagnetic Br	rake*4	Power Supply Input			24 VDC±5%*5 0.25 A				

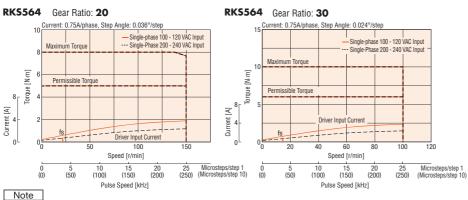
Definition → Refer to page 22

■ Either **A** (single shaft), **B** (double shaft) or **M** (electromagnetic brake) indicating the configuration is entered where the box ☐ is located within the product name. Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where ☐ is located within the product name.

A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🔷 is located within the product name.

*1 The values inside the brackets [] represent the specification for the electromagnetic brake type


*2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor.


*3 For Built-in Controller package, the control power supply is required.

*4 For pulse input package, a separate power supply for electromagnetic brakes is required.

*5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Speed -Torque Characteristics fs: Maximum Starting Frequency

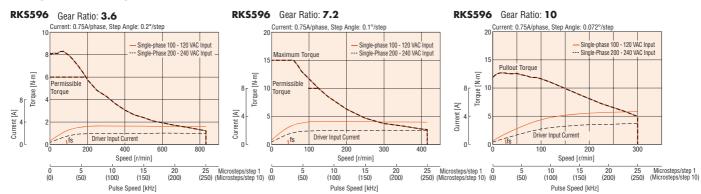
Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.

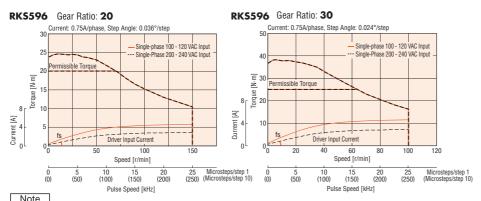
[When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

TS Geared Type Frame Size 90 mm

TS Geared Type with Electromagnetic Brake Frame Size 90 mm

Specifications (RoHS)


₽1° us € €


Product	Nomo	Built-In Controller Type	RKS596□	RKS596□ □D-TS7.2-♦	RKS596□	RK\$596□ □ D-T\$20-♦	RK\$596□ □ D-T\$30-♦		
Floudel	INAIIIE	Pulse Input Type	RKS596□ <u></u> -TS3.6-♦	RKS596□ <u></u> -TS7.2-♦	RKS596□ -TS10-♦	RKS596□ -TS20-♦	RKS596□ <u></u> -TS30-♦		
Maximum Holdin	g Torque	N⋅m	6	10	14	20	25		
Rotor Inertia		J∶kg·m²		1100×10 ⁻⁷ [2200×10 ⁻⁷]* ¹					
Rated Current		A / Phase			0.75				
Basic Step Angle			0.2°	0.1°	0.072°	0.036°	0.024°		
Gear Ratio			3.6	7.2	10	20	30		
Permissible Torqu	ue * 2	N⋅m	6	10	14	20	25		
Maximum Torque	e * 2	N⋅m	9	15	20	35	45		
Holding Torque at	Power ON	N·m	4.5	9	7.4	14.8	22		
Motor Standstill	Electromagn	etic Brake N·m	4.5	9	7.4	14.8	22		
Permissible Spee	ed Range	r/min	0~833	0~416	0~300	0~150	0~100		
Backlash		arc min	25(0.42°)	25(0.42°) 15(0.25°) 10(0.17°)					
D 0 l	Voltage / Fre	quency		Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz					
Power Supply Input	Input	Single-Phase 100-120 VAC	3	6		4.9			
прис	Current A	Single-Phase 200-240 VAC	2.1		3.0				
Excitation Mode			Microstep						
Control Power Su	ıpplye*3		24 VDC±5% 0.2 A						
Electromagnetic Br	akee*4	Power Supply Input			24 VDC±5%*5 0.42 A				

Definition → Refer to page 22

- Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box ☐ is located within the product name. Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🔲 is located within the product name.
- A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box 🔷 is located within the product name.
- *1 The values inside the brackets [] represent the specification for the electromagnetic brake type.
 *2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor.
- *3 For Built-in Controller package, the control power supply is required.
- *4 For pulse input package, a separate power supply for electromagnetic brakes is required.
- *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Speed -Torque Characteristics fs: Maximum Starting Frequency

Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.

When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

PS Geared Type Frame Size 42 mm

PS Geared Type with Electromagnetic Brake Frame Size 42 mm

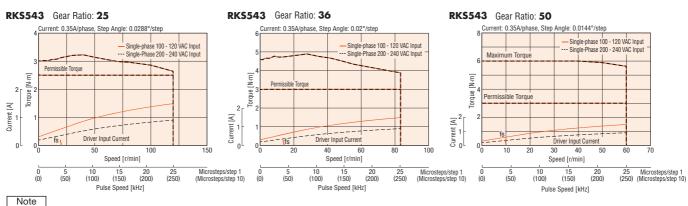
■ Specifications (RoHS)

191 (€

Product Name	Built-In Controller Type	RKS545□ □ D-PS5-◇	RKS545□ D-PS7.2-♦	RKS545□□D-PS10-♦	RKS543□ D-PS25-♦	RKS543□ D-PS36-♦	RKS543□ D-PS50-♦	
Product Name	Pulse Input Type	RKS545□ <u></u> -PS5-◇	RKS545□ □-PS7.2-♦	RKS545□ -PS10-♦	RKS543□ -PS25-♦	RKS543□ -PS36-♦	RKS543□ -PS50-♦	
Maximum Holding To	orque N·m	1	1	.5	2.5		3	
Rotor Inertia	J∶kg·m ⁱ	2	64×10 ⁻⁷ [79×10 ⁻⁷] * 1			30×10 ⁻⁷ [45×10 ⁻⁷]*1		
Rated Current	A / Phase)		0.	35			
Basic Step Angle		0.144°	0.1°	0.072°	0.0288°	0.02°	0.0144°	
Gear Ratio		5	7.2	10	25	36	50	
Permissible Torque*	Permissible Torque*2 N·m		1 1.5		2.5	3		
Maximum Torque*2	N·m	1.5	2		6			
Holding Torque at Pov	ver ON N·m	0.74	1.07	1.49	1.85	2.6	3	
	tromagnetic Brake N·m	0.74	1.07	1.49	1.85	2.6	3	
Permissible Speed R	ange r/mir	0~600	0~416	0~300	0~120	0~83	0~60	
Backlash	arc mi	1	25(0.42°)					
Volt	age / Frequency		Single-Phase 1	00-120 VAC, Single-Ph	ase 200-240 VAC -15~	+10% 50/60 Hz		
Power Supply Input	nput Single-Phase 100-120 VAC		1.9		2.1			
Cu	rrent A Single-Phase 200-240 VAC		1.2	1.2		1.3		
Excitation Mode			Microstep					
Control Power Suppl	y * 3	24 VDC±5% 0.2 A						
Electromagnetic Bra	ke*4 Power Supply Input		24 VDC±5%*5 0.08 A					

Definition → Refer to page 22

Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🗌 is located within the product name.


A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamond is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type.

*3 For Built-in Controller package, the control power supply is required.

*4 For pulse input package, a separate power supply for electromagnetic brakes is required.

Speed -Torque Characteristics fs: Maximum Starting Frequency

Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.

[When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

[●] Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box 🗌 is located within the product name.

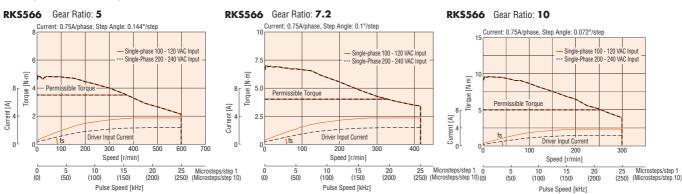
^{*2} Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor.

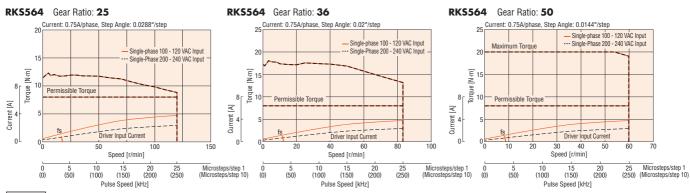
^{*5} If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

PS Geared Type Frame Size 60 mm

PS Geared Type with Electromagnetic Brake Frame Size 60 mm

Specifications (RoHS)


₽1°us ∈ €


Product Name	Built-In Controller Type	RK\$566□ □ D-P\$5-◊	RKS566□ D-PS7.2-♦	RKS566□ D-PS10-♦	RK\$564□ D -P\$25-♦	RKS564□	RKS564□ D-PS50-♦	
Product Name	Pulse Input Type	RKS566□ -PS5-♦	RK\$566□ -P\$7.2-♦	RK\$566□ -P\$10-◊	RK\$564□ -P\$25-♦	RKS564□ -PS36-♦	RK\$564□ -P\$50-◊	
Maximum Holding Torq	ue N·n	3.5	4	5	8			
Rotor Inertia J: kg·m ²		2	270×10 ⁻⁷ [430×10 ⁻⁷]*1			160×10 ⁻⁷ [320×10 ⁻⁷]*1		
Rated Current	A / Phas)		0.	75			
Basic Step Angle		0.144°	0.1°	0.072°	0.0288°	0.02°	0.0144°	
Gear Ratio		5	7.2	10	25	36	50	
Permissible Torque*2	N·n	3.5	4	5	8			
Maximum Torque*2	N·n	7	9	11	16	20		
Holding Torque at Power	ON N·n	2.7	3.9	5	7.2		8	
	magnetic Brake N·n	2.7	3.9	5	7.2		8	
Permissible Speed Ran	ge r/mi	0~600	0~416	0~300	0~120	0~83	0~60	
Backlash	arc mi	1	7(0.12°) 9(0.15°)			9(0.15°)		
Voltag	e / Frequency		Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz					
Power Supply Input Inp	ut Single-Phase 100-120 VAC		3.8		4.0			
Curre	nt A Single-Phase 200-240 VAC		2.4		2.4			
Excitation Mode			Microstep					
Control Power Supply*	3	24 VDC±5% 0.2 A						
Electromagnetic Brake*4 Power Supply Input			24 VDC±5%*5 0.25 A					

Definition → Refer to page 22

- Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box 🗌 is located within the product name.
- Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🔲 is located within the product name.
- A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \bigcirc is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type. *2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor.
- *3 For Built-in Controller package, the control power supply is required.
- *4 For pulse input package, a separate power supply for electromagnetic brakes is required.
- *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Speed -Torque Characteristics fs: Maximum Starting Frequency

Note

[When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

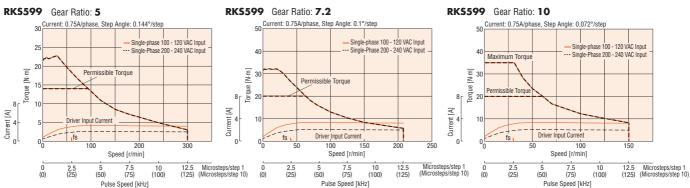
Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor

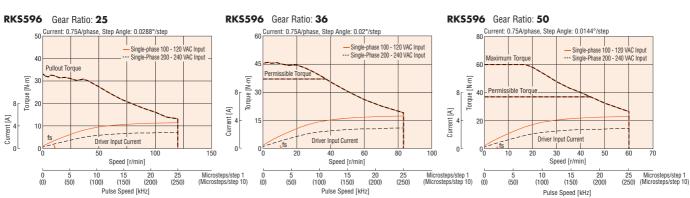
PS Geared Type Frame Size 90 mm

PS Geared Type with Electromagnetic Brake Frame Size 90 mm

■ Specifications (RoHS)

3) 211**47**


Dun dunah Marana	Built-In Controller Type	RK\$599□ □ D-P\$5-♦	RKS599□ D-PS7.2-♦	RKS599□	RKS596□	RKS596□	RKS596□ D-PS50-♦		
Product Name	Pulse InputType	RKS599□ -PS5-♦	RK\$599□ □-P\$7.2-♦	RKS599□ □-PS10-♦	RKS596□ -PS25-♦	RK\$596□ -P\$36-♦	RK\$596□ -P\$50-◊		
Maximum Holding Torque	N⋅m	14	2	0	36 37				
Rotor Inertia	J∶kg⋅m²		2200×10 ⁻⁷			1100×10 ⁻⁷			
Tiotor morau	0g		[3300×10 ⁻⁷]*1			[2200×10 ⁻⁷]*1			
Rated Current	A / Phase			0.	75				
Basic Step Angle		0.144°	0.1°	0.072°	0.0288°	0.02°	0.0144°		
Gear Ratio		5	7.2	10	25	36	50		
Permissible Torque*2	N⋅m	14	14 20		37				
Maximum Torque*2	N⋅m	28	35		56	60			
Holding Torque at Power Ol		12.5	18	20	18.5	26	37		
Motor Standstill Electrom	agnetic Brake N·m	12.5	18	20	18.5	26	37		
Permissible Speed Range	r/min	0~300	0~208	0~150	0~120	0~83	0~60		
Backlash	arc min		7(0.12°)			9(0.15°)			
Voltage /	Frequency	Single-Phase 100-120 VAC, Single-Phase 200-240 VAC -15~+10% 50/60 Hz							
Power Supply Input	Single-Phase 100-120 VAC		3.5			4.9			
Current	A Single-Phase 200-240 VAC		2.2			3.0			
Excitation Mode		Microstep							
Control Power Supply*3		24 VDC±5% 0.2 A							
Electromagnetic Brake*4	Power Supply Input	24 VDC±5%*5 0.42 A							


Definition → Refer to page 22

Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🗌 is located within the product name.

*3 For Built-in Controller package, the control power supply is required.

Speed -Torque Characteristics fs: Maximum Starting Frequency

Note

[When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

[■] Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box □ is located within the product name.

A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name.

^{*1} The values inside the brackets [] represent the specification for the electromagnetic brake type.

*2 Permissible Torque and Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor.

^{*4} For pulse input package, a separate power supply for electromagnetic brakes is required.

^{*5} If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor case under 100°C.

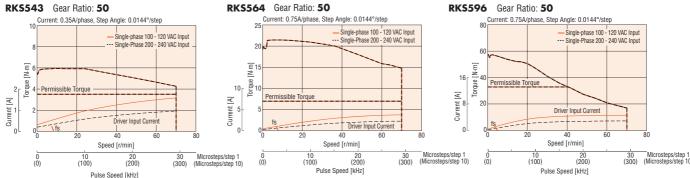
Harmonic Geared Type Frame Size 42 mm, 60 mm, 90 mm Harmonic Geared Type with Electromagnetic Brake

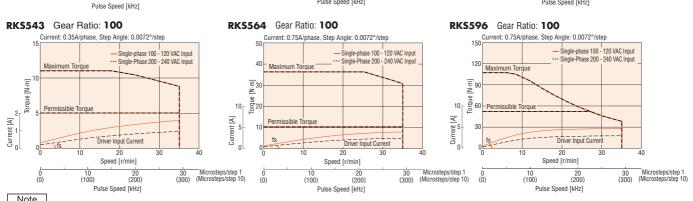
Frame Size 42 mm, 60 mm, 90 mm

Specifications (RoHS)

c¶us (€

Product Nan	mo	Built-In Controller Type	RKS543□□D-HS50-♦	RKS543□ D-HS100-♦	RKS564□□D-HS50-♦	RKS564□ D-HS100-♦	RKS596□ D-HS50-♦	RKS596□ D-HS100-♦
		Pulse Input Type	RKS543□ -HS50-♦	RK\$543□ -H\$100-◊	RK\$564□ -H\$50-♦	RKS564□ -HS100-♦	RK\$596□ -H\$50-♦	RKS596□ -HS100-♦
Maximum Holding	Torque	N·m	3.5	5	7	10	33	52
Rotor Inertia		J : kg⋅m²	47×	10 ⁻⁷	195	×10 ⁻⁷	1300×10 ⁻⁷	
notor inertia		J . Kg·III-	[62×1	0-7]*1	[355×	10 ⁻⁷]* ¹	[2400×	10 ⁻⁷]* ¹
Rated Current		A / Phase	0.0	35		0.	75	
Basic Step Angle			0.0144°	0.072°	0.0144°	0.0072°	0.0144°	0.0072°
Gear Ratio			50	100	50	100	50	100
Permissible Torque	е	N·m	3.5	5	7	10	33	52
Maximum Torque*	k 2	N·m	8.3	11	23	36	73	107
Holding Torque at Po	ower ON	N⋅m	3.5	5	7	10	33	52
Motor Standstill El	lectromagn	etic Brake N·m	3.5	5	7	10	33	52
Permissible Speed	l Range	r/min	0~70	0~35	0~70	0~35	0~70	0~35
Lost Motion		arc min	1.5 maximum	1.5 maximum	0.7 maximum	0.7 maximum	0.7 maximum	0.7 maximum
(Load Torque)			(±0.16 N·m)	(±0.20 N·m)	(±0.28 N·m)	(±0.39 N·m)	(±1.2 N·m)	(±1.2 N·m)
Power Supply Vo	oltage / Fre	quency		Single-Phase 10	00-120 VAC, Single-Pha	ase 200-240 VAC -15~	+10% 50/60 Hz	
Input	Input	Single-Phase 100-120 VAC	2.	.1	4	.0	4.9	
put	Current A	Single-Phase 200-240 VAC	1.	.3	2.4		3.0	
Excitation Mode			Microstep					
Control Power Supply*3		24 VDC±5% 0.2 A						
Electromagnetic Br	rake*4	Power Supply Input	24 VDC±5%	% ^{*5} 0.08 A	24 VDC±5%*5 0.25 A		24 VDC±5%*5 0.42 A	


Definition → Refer to page 22


- Either A (single shaft), B (double shaft) or M (electromagnetic brake) indicating the configuration is entered where the box □ is located within the product name. Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 🗌 is located within the product name
- A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name. *1 The values inside the brackets [] represent the specification for the electromagnetic brake type.
- *2 Maximum Torque shown above is value recorded at the Gear. Refer to Speed -Torque Specification graph for output torque of Geared Motor.
- *3 For Built-in Controller package, the control power supply is required.
- *4 For pulse input package, a separate power supply for electromagnetic brakes is required.
- *5 If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

Note

The inertia represents a sum of the inertia of the harmonic gear converted to a motor shaft value, and the rotor inertia

Speed -Torque Characteristics fs: Maximum Starting Frequency

- Pay attention to heat dissipation from the motor as there will be a considerable amount of heat under certain conditions. Be sure to keep the temperature of the motor
- ase under 100°C.
 For the Harmonic Gear operation, be sure to keep the temperature of the gear case under 70°C to prevent deterioration of grease applied to the gear. [When conforming to the UL or CSA Standards, it is required to keep the temperature of the motor case at 75°C or less, since the motor is recognized as Thermal class 105 (A).]

Driver Specification

	Built-in Controller type	Pulse-input Type
Maximum Input Pulse Frequency	-	Line Driver Output from controller: 500kHz (at 50% duty) Open-collector Output from controller: 250kHz (at 50% duty) Active low pulse-input
Input Signal	Photocoupler input Input signal voltage : 11.4 VDC~26.4 VDC	Photocoupler, Open-collector output: 11.4 VDC~26.4 VDC (AWO, CS, FREE, ALM-RST) Photocoupler, Open-collector output: 3 VDC~5.25 VDC (CW (PLS) + 5 V, CCW (DIR) + 5 V) Photocoupler, Open-collector output: 21.6 VDC~26.4 VDC (CW (PLS) + 24 V, CCW (DIR) + 24 V)
Output Signal	Photocoupler · Open-collector output External use condition: 30 VDC maximum, 10 mA maximum	Photocoupler · Open-collector output External use condition: 30 VDC maximum, 10 mA maximum (READY, ALM, TIM)
Number of Positioning Program	64	-
Positioning Operation	One-shot operation, Linked operation, Linked operation 2, Sequential mode, Direct mode	-
Other operation	Continuous Operation, JOG Operation, Return-To-Home Operation, Test Operation	-
Control Module OPX-2A	0	-
Data Setting Software MEXEO2	0	-

■ Built-In Controller Type RS-485 Communication Specifications

Protocol	Modbus RTU mode
Electrical Characteristics	EIA-485 compliance Shielded twisted-pair wire (TIA/EIA-568B CAT5e or greater recommended) is used up to a total extension length of 50 m.
Transmission/ Reception Mode	Half-duplex communication Asynchronous mode (data: 8-bit, stop bit: 1-bit/2-bit, parity: none/odd/even)
Baud Rate	9600 bps/19200 bps/38400 bps/57600 bps/115200 bps
Connection Type	Up to 31 units can be connected to one programmable controller (master equipment).

General Specifications

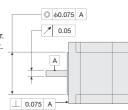
		Motor	Dri	ver			
		Motor	Built-In Controller Type	Pulse Input Type			
Thermal Clas	s	130 (B) [Recognized as 105 (A) by UL]	-				
Insulation Resistance		100 MΩ or more when 500 VDC megger is applied between the following places: · Case – Motor windings · Case – Electromagnetic brake windings [‡] 1	100 MΩ or more when 500 VDC megger is applied between the folloplaces: • PE terminal – Power supply terminal • Signal I/O terminal – Power supply terminal				
		Sufficient to withstand the following for 1 minute:	Sufficient to withstand the following for				
Dielectric Strength		Case – Motor windings 1.5 kVAC 50 Hz or 60 Hz Case – Electromagnetic brake windings 1.5 kVAC 50 Hz or 60 Hz*1	PE terminal – Power supply terminal 1.5 kVAC 50 Hz or 60 Hz Signal I/O terminal – Power supply terminal 1.8 kVAC 50 Hz or 60 Hz	PE terminal – Power supply terminal 1.8 kVAC 50 Hz or 60 Hz Signal I/O terminal – Power supply terminal 1.9 kVAC 50 Hz or 60 Hz			
Operating Ambient Operating Temperature Environment (In		-10~+50°C (non-freezing): Standard Type, TS and PS Geared Type 0~+50°C (non-freezing): Package with Encoder 0~+40°C (non-freezing): Harmonic geared type	0~+55°C ^{\$¢} 2 (non-freezing)				
Operation)	Ambient Humidity	85% or less (non-condensing)					
	Atmosphere	No corrosive gases, dust. Avoid contact with water or oil.					
Temperature	Rise	Temperature rise of the windings are 80°C or less. Measured at rated current, at standstill, five phases energized measured (by the resistance change method).	-				
Degree of Pro	otection	IP20	IP10	IP20			
Stop Position	Accuracy*3	±3 arc minutes (±0.05°)					
Shaft Runout		0.05 T.I.R (mm)* ⁴		_			
Radial Play*5		0.025 mm Max. (Load 5 N)	-				
Axial Play*6		0.075 mm Max. (Load 10 N)	-				
Concentricity for Shaft in the Mounting Pilot		0.075 T.I.R (mm)*4	-				
Perpendicular Mounting Sur	rity for Shaft of the rface	0.075 T.I.R (mm)*4	-				

- *1 Only for Built-in Controller Package

- *2 When attaching a heat sink 200 mm x 20 mm x 2 mm, made from aluminum plate or higher.

 *3 This value is measured at step angle 0.72°, under no load. (The value changes depends on the size of the load.)

 *4 T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated one revolution centered on the reference axis center.
- *5 Radial Play: Displacement in shaft position in the radial direction, when a 5 N load is applied in the vertical direction to the tip of the motor's shaft. *6 Axial Play: Displacement in shaft position in the axial direction, when a 10 N load is applied to the motor's shaft in the axial direction.

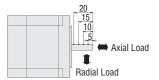


Do not measure insulation resistance or perform the dielectric strength test while the motor and driver are connected.

Encoder Specifications

Resolution	500 P/R
Output mode	Incremental
Output signal	3 channels
Output Circuit type	Line Driver

Permissible Radial Load and Permissible Axial Load

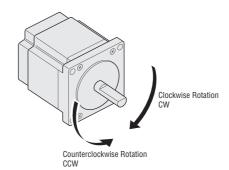

Unit=N

					Permi	ssible Radia	al Load		
Type	Frame Size	Model	Gear Ratio	Distance from tip of shaft mm					Permissible Axial Load
				0	5	10	15	20	
	42 mm	RKS54		35	44	58	85	-	15
Standard Type	60 mm	RKS56	_	90	100	130	180	270	30
	85 mm	RKS59		260	290	340	390	480	60
	42 mm	RKS54	3.6, 7.2, 10	20	30	40	50	-	15
	42 11111	KK354	20, 30	40	50	60	70	-	15
TS Geared Type	60 mm	RKS56	3.6, 7.2, 10	120	135	150	165	180	40
15 Geared Type	00 111111	KK330	20, 30	170	185	200	215	230	40
	90 mm	RKS59	3.6, 7.2, 10	300	325	350	375	400	150
	90 111111	KK339	20, 30	400	450	500	550	600	150
	42 mm		5	70	80	95	120	-	
		RKS54	7.2	80	90	110	140	_	100
			10	85	100	120	150	_	
			25	120	140	170	210	_	
			36	130	160	190	240	_	
			50	150	170	210	260	_	
			5	170	200	230	270	320	200
		DVCE4	7.2	200	220	260	310	370	
DC Coored Tune			10	220	250	290	350	410	
PS Geared Type	60 mm	RKS56	25	300	340	400	470	560	
			36	340	380	450	530	630	
			50	380	430	500	600	700	
			5	380	420	470	540	630	
			7.2	430	470	530	610	710	
	00	DVCEO	10	480	530	590	680	790	600
	90 mm	RKS59	25	650	720	810	920	1070	000
			36	730	810	910	1040	1210	
			50	820	910	1020	1160	1350	
	42 mm	RKS54		180	220	270	360	510	220
armonic Geared Type	60 mm	RKS56	50, 100	320	370	440	550	720	450
	90 mm	RKS59		1090	1150	1230	1310	1410	1300

[•] P5 geared type, when either the permissible radial load or permissible axial load are added, shall have a lifespan value satisfying 20,000 hours. For the gearhead lifespan please contact the nearest Oriental Motor sales office.

Radial Load and Axial Load

Distance from Shaft End [mm]

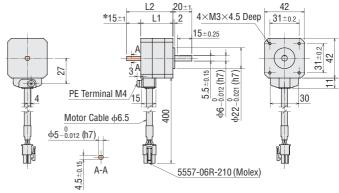

Rotation direction

This indicates the rotation direction as viewed from the output shaft side of the motor (factory setting).

The rotation direction of the output gear shaft relative to the standard type motor output shaft varies depending on the gear type and gear ratio. Please check the following table.

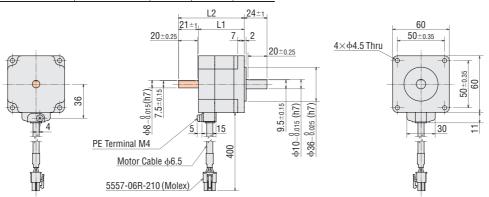
Туре	Gear Ratio	Rotation direction Relative to Motor Output Shaft		
TS Geared	3.6, 7.2, 10	Same direction		
15 Geared	20, 30	Opposite direction		
PS Geared	All gear ratios	Same direction		
Harmonic Geared	All gear ratios	Opposite direction		

Standard Type Motor

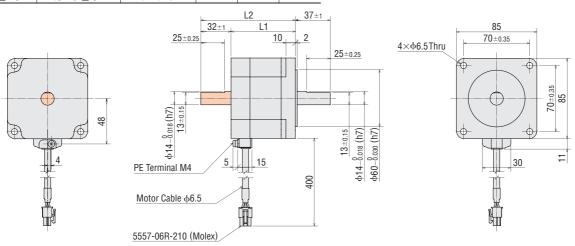

Dimensions (Unit = mm)

Motors

Frame Size 42 mm


Product Built-In Controller	Motor Product Name	L1	L2	Mass kg	
	Pulse Input				ilig .
RKS543A□D-♦	RKS543A -	PKE543AC	34	-	0.26
RKS543B□D-♦	RKS543B <u></u> -♦	PKE543BC	34	49	
RKS544A_D-♦	RKS544A	PKE544AC	40	_	0.32
RKS544B□D-♦	RKS544B□-♦	PKE544BC	40	55	0.32
RKS545A_D-♦	RKS545A _□ -♦	PKE545AC	46	_	0.38
RKS545B_D-♦	RKS545B <u></u> -♦	PKE545BC	40	61	0.38

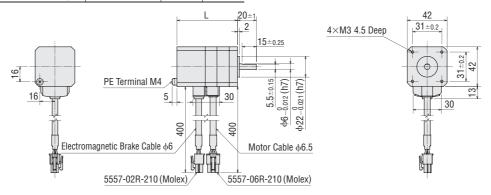
 \clubsuit Length of milling cut for double shaft type is 15±0.25.


Frame Size 60 mm

Product Name Built-In Controller Pulse Input		Motor Product Name	L1	L2	Mass kg
RKS564A D-	RKS564A -	PKE564AC	48.5	-	0.7
RKS564B□D-♦	RK\$564B □ -♦	PKE564BC	40.3	69.5	
RKS566A□D-♦	RKS566A□-♦	PKE566AC	59.5	-	0.9
RKS566B□D-♦	RK\$566B □ -♦	PKE566BC	39.3	80.5	0.9
RKS569A□D-♦	RKS569A □ -♦	PKE569AC	89	_	1.4
RKS569B□D-♦	RKS569B□-♦	PKE569BC	09	110	1.4

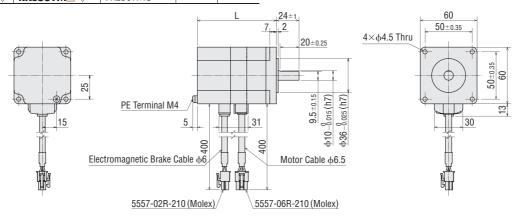
Frame Size 85 mm

Product Name Built-In Controller Pulse Input		Motor Product Name	L1	L2	Mass kg
built-iii Controller	Pulse Iliput	Ivallie			
RKS596A_D-♦	RKS596A <u></u> -♦	PKE596AC	68	-	1.9
RKS596B_D-♦	RKS596B <u></u> -♦	PKE596BC	00	100	
RKS599A_D-♦	RKS599A <u></u> ♦	PKE599AC	- 98	-	3.0
RKS599B_D-♦	RKS599B <u></u> ♦	PKE599BC	90	130	3.0
RK\$5913A□D-♦	RKS5913A□-♦	PKE5913AC	128	_	4.1
RK\$5913B_D-♦	RK\$5913B◇	PKE5913BC	120	160	4.1

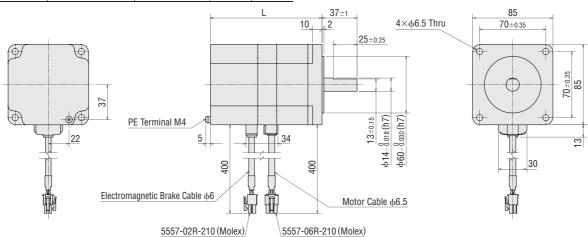


■ Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name.
 ■ A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name.
 ■ These dimensions are for double shaft models. For single shaft models, ignore the areas.

♦ Standard Type with Electromagnetic Brake


Frame Size 42 mm

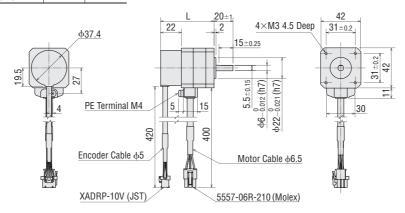
Product Name		Motor Product	1	Mass kg	
Built-In Controller	Pulse Input	Name	1	maco ng	
RKS543M□D-♦	RKS543M □ -♦	PKE543MC	64	0.40	
RKS544M_D-♦	RKS544M□-♦	PKE544MC	70	0.46	
RKS545M D-♦	RKS545M□-♦	PKE545MC	75	0.52	


Frame Size 60 mm

Product Name		Motor Product	- 1	Mass kg
Built-In Controller	Pulse Input	Name	_	iviass ky
RKS564M_D-♦	RKS564MII-	PKE564MC	83.5	1.0
RKS566M_D-♦	RKS566MII-	PKE566MC	94.5	1.2
RKS569M D-	RKS569M□-♦	PKE569MC	124	1.7

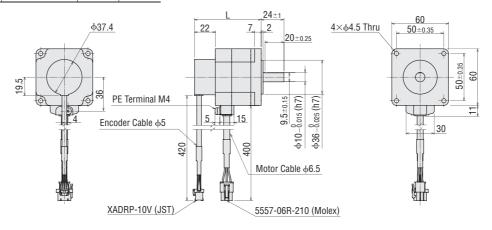
Frame Size 85 mm

Product Name		Motor Product	- 1	Mass kg
Built-In Controller	Pulse Input	Name		Mass kg
RKS596M□D-♦	RKS596M <u></u> -♦	PKE596MC	118	2.7
RKS599M□D-♦	RKS599M <u></u> ♦	PKE599MC	148	3.8
RKS5913M□D-♦	RK\$5913M□-♦	PKE5913MC	178	4.9

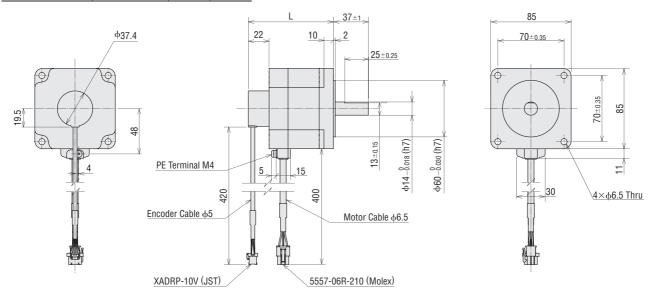

■ Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name.

■ A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name.

♦ Standard Type with Encoder


Frame Size 42 mm

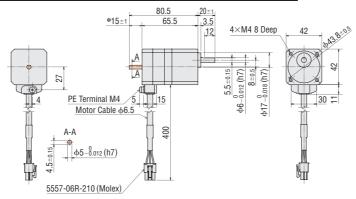
Product Name	Motor Product Name	L	Mass kg
RKS543R D2-	PKE543RC2	56	0.32
RKS544R D2-	PKE544RC2	62	0.38
RK\$545R_D2-\(\triangle\)	PKE545RC2	68	0.44


Frame Size 60 mm

Product Name	Motor Product Name	L	Mass kg
RKS564RD2-	PKE564RC2	70.5	0.76
RKS566R D2-	PKE566RC2	81.5	0.96
RK\$569R D2-	PKE569RC2	111	1.5

Frame Size 85 mm

Product Name	Motor Product Name	L	Mass kg
RKS596R_D2-♦	PKE596RC2	90	2.0
RKS599R_D2-♦	PKE599RC2	120	3.1
RKS5913R D2-	PKE5913RC2	150	4.2

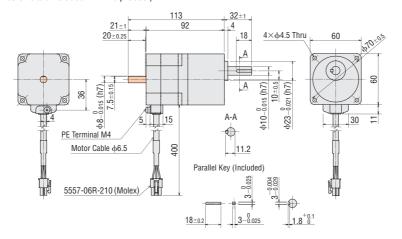

■ Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name.

■ A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name.

♦ TS Geared Type

Frame Size 42 mm

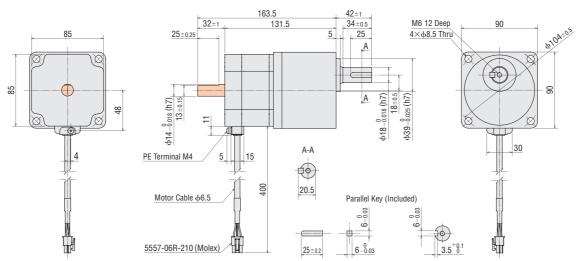
Produc	t Name	Motor Product	Coor Dotio	Massira
Built-In Controller	Pulse Input	Name	Gear Ratio	Mass kg
RKS543A□D-TS□-♦	RKS543A□-TS□-◇	PKE543AC-TS□	3.6, 7.2, 10, 20, 30	0.41
RKS543B□D-TS□-♦	RKS543B□-TS□-♦	PKE543BC-TS□	3.6, 7.2, 10, 20, 30	0.41



* Length of milling cut for double shaft type is 15±0.25.

Frame Size 60 mm

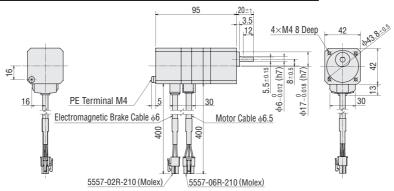
Product Name		Motor Product	Gear Ratio	Maga ka
Built-In Controller	Pulse Input	Name	ueai naliu	Mass kg
RKS564A_D-TS	RKS564ATS	PKE564AC-TS□•♦	2 4 7 2 10 00 20	1.1
RKS564B□D-TS□-♦	RKS564B□-TS□-♦	PKE564BC-TS□•♦	3.6, 7.2, 10, 20, 30	1.1


• Mounting Screw: M4×60 P0.7 (4 screws are included with the product)

Frame Size 90 mm

Product Name Moto		Motor Product	Gear Ratio	Mass kg
Built-In Controller	Pulse Input	Name	ueai naliu	IVIASS KY
RKS596A_D-TS	RKS596A□-TS□-◇	PKE596AC-TS	2 6 7 2 10 20 20	3.1
RKS596B D-TS□-♦	RKS596B□-TS□-♦	PKE596BC-TS	3.6, 7.2, 10, 20, 30	3.1

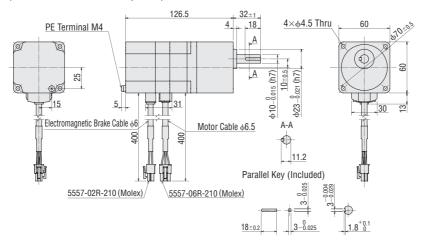
• Mounting Screw: M8×90 P1.25 (4 screws are included with the product)



- Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📃 is located within the product name.
- lacktriangle A value indicating the Gear Ratio is entered where the box \Box is located within the product name.
- A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box \diamondsuit is located within the product name.
- These dimensions are for double shaft models. For single shaft models, ignore the _____ areas.

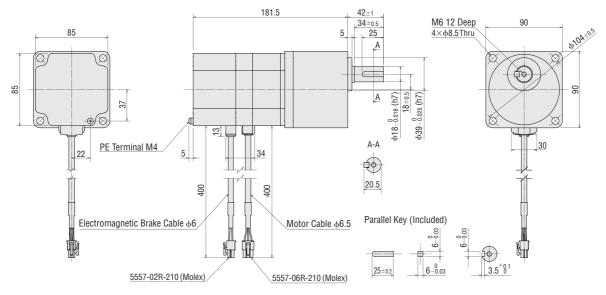
\Diamond **TS** Geared Type with Electromagnetic Brake

Frame Size 42 mm


Produc	t Name	Motor Product		Manalia
Pulse Input	Built-In Controller	Name	Gear Ratio	Mass kg
RKS543M□D-TS□-♦	RKS543M□-TS□-♦	PKE543MC-TS□	3.6, 7.2, 10, 20, 30	0.55

Frame Size 60 mm

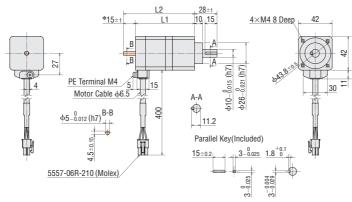
Produc	t Name	Motor Product	Coor Potio	Magalia
Pulse Input	Built-In Controller	Name	Gear Ratio	Mass kg
RKS564M D-TS -	RKS564MII-TSII-	PKE564MC-TS	3.6, 7.2, 10, 20, 30	1.4


• Mounting Screw: M4×60 P0.7 (4 screws are included with the product)

Frame Size 90 mm

Produc	t Name	Motor Product	Gear Ratio	Mass kg
Pulse Input	Built-In Controller	Name	deal hallo	wass kg
RKS596MD-TSD-	RKS596M□-TS□-♦	PKE596MC-TS	3.6, 7.2, 10, 20, 30	3.9

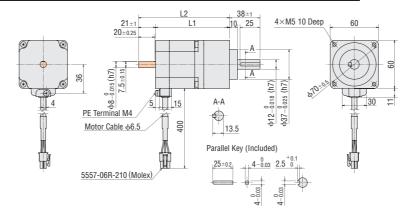
• Mounting Screw: M8×90 P1.25 (4 screws are included with the product)



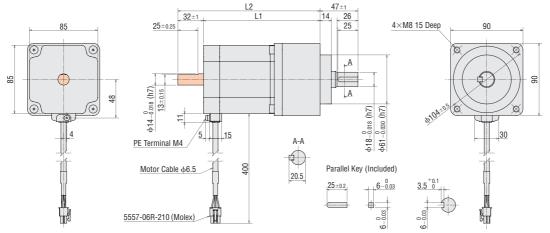
- Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📃 is located within the product name.
- A value indicating the Gear Ratio is entered where the box ☐ is located within the product name.
 A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box ♦ is located within the product name.

◇PS Geared Type

Frame Size 42 mm


		Motor Product	Gear Ratio	L1	12	Mass kg
Built-In Controller	Pulse Input	Name	ucai riado	illo Li	LZ	Wass Kg
RKS545A_D-PS	RKS545A□-PS□-◇	PKE545AC-PS	5 7 2 10	73.5	-	0.58
RKS545B_D-PS	RKS545B□-PS□-◇	PKE545BC-PS□	5, 7.2, 10	73.3	88.5	0.36
RKS543A_D-PS	RKS543A□-PS□-◇	PKE543AC-PS	25 26 50	86	-	0.61
RKS543B D-PS -	RK\$543B □ -P\$□-♦	PKE543BC-PS	25, 36, 50	00	101	0.01

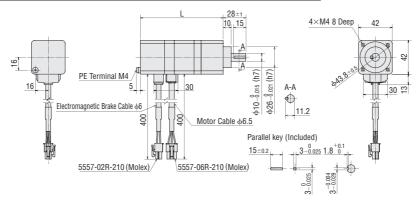
*Length of milling cut for double shaft type is 15±0.25.


Frame Size 60 mm

Product Name		Motor Product	Gear Ratio	11	12	Mass kg
Built-In Controller	Pulse Input	Name	deal hallo		LZ	IVIASS KY
RKS566AD-PSD-	RKS566A□-PS□-◇	PKE566AC-PS	5, 7.2, 10	92	-	1.3
RKS566B_D-PS	RKS566B□-PS□-♦	PKE566BC-PS□	5, 7.2, 10	92	113	1.3
RKS564AD-PSD-	RKS564A-PS-	PKE564AC-PS	25 26 50	101.5	-	1.4
RKS564B D-PS -	RKS564B□-PS□-◇	PKE564BC-PS	25, 36, 50	101.5	122.5	1.4

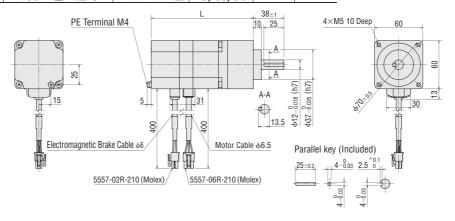
Frame Size 90 mm

Product Name Motor Product		Motor Product	Gear Ratio	L1	L2	Magalia
Built-In Controller	Pulse Input	Name	deal hallo		L2	Mass kg
RKS599A□D-PS□-♦	RKS599A□-PS□-◇	PKE599AC-PS□	5, 7.2, 10	145	-	4.4
RKS599B□D-PS□-♦	RKS599B□-PS□-♦	PKE599BC-PS□		140	177	4.4
RKS596A□D-PS□-♦	RKS596A□-PS□-♦	PKE596AC-PS□	25 26 50	142.5	-	4.1
RKS596B□D-PS□-♦	RKS596B□-PS□-◇	PKE596BC-PS	25, 36, 50	142.3	174.5	4.1

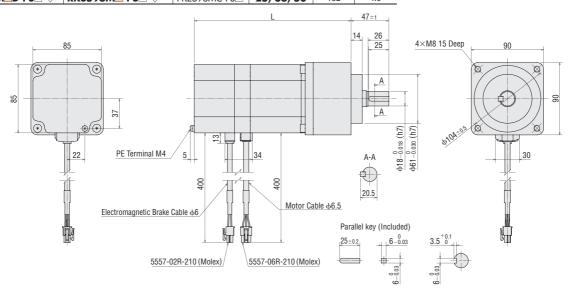

■ Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📃 is located within the product name.

<sup>A value indicating the Gear Ratio is entered where the box ☐ is located within the product name.
A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box ♦ is located within the product name.
These dimensions are for double shaft models. For single shaft models, ignore the ☐ areas.</sup>

◇PS Geared Type with Electromagnetic Brake


Frame Size 42 mm

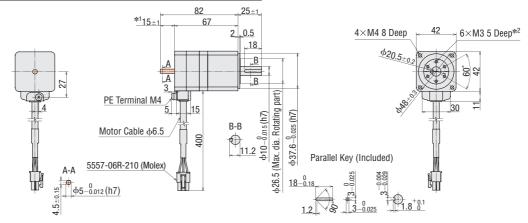
Product Name		Motor Product	Gear Ratio	1	Maga ka
Built-In Controller	Pulse Input	Name	deal hallo	L	Mass kg
RKS545M_D-PS	RKS545M□-PS□-◇	PKE545MC-PS	5, 7.2, 10	103	0.72
RKS543M□D-PS□-♦	RKS543M□-PS□-♦	PKE543MC-PS	25, 36, 50	115.5	0.75


Frame Size 60 mm

Product Name		Motor Product	Gear Ratio	- 1	Maga ka
Built-In Controller	Pulse Input	Name	ueai naliu	L	Mass kg
RKS566M_D-PS	RKS566M□-PS□-♦	PKE566MC-PS	5, 7.2, 10	127	1.6
RKS564M_D-PS	RKS564M□-PS□-◇	PKE564MC-PS	25, 36, 50	136	1.7

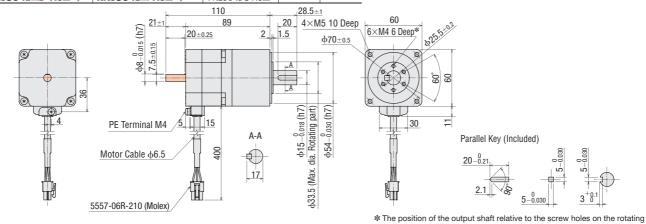
Frame Size 90 mm

Product Name		Motor Product	Gear Ratio		Mass kg
Built-In Controller	Pulse Input	Name	ucai natio		IVIASS KY
RKS599M_D-PS	RKS599M□-PS□-◇	PKE599MC-PS	5, 7.2, 10	195	5.2
RKS596M D-PS -	RKS596M□-PS□-♦	PKF596MC-PS	25, 36, 50	192	4.9



- Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📗 is located within the product name.
- A value indicating the Gear Ratio is entered where the box ☐ is located within the product name.
 A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box ♦ is located within the product name.

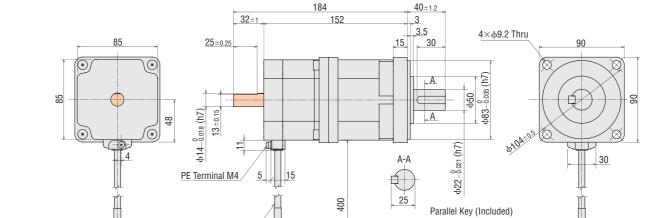
Frame Size 42 mm


Product Name		Motor Product	Gear	Magalia
Built-In Controller	Pulse Input	Name	Ratio	Mass kg
RKS543A□D-HS□-♦	RKS543A□-HS□-◇	PKE543AC-HS□	50, 100	0.47
RKS543B_D-HS	RKS543B□-HS□-◇	PKE543BC-HS	30, 100	0.47

- **★1** Length of milling cut for double shaft type is 15±0.25.
- *2 The position of the output shaft relative to the screw holes on the rotating part is arbitrary.

Frame Size 60 mm

Product Name		Motor Product	Gear	Mass kg
Built-In Controller	Pulse Input	Name	Ratio	iviass ky
RKS564A□D-HS□-♦	RKS564A□-HS□-◇	PKE564AC-HS□	50 100	1.0
RKS564B□D-HS□-♦	RKS564B□-HS□-♦	PKE564BC-HS	50, 100	1.2



part is arbitrary.

7-0.090

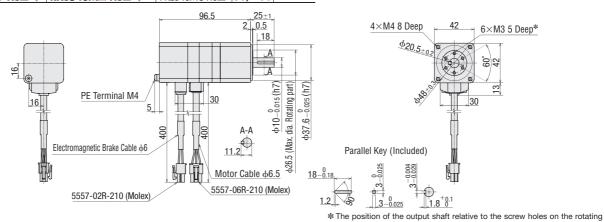
Frame Size 90 mm

Product Name		Motor Product	Gear	Mass kg
Built-In Controller	Pulse Input	Name	Ratio	was ny
RKS596A□D-HS□-♦	RKS596A□-HS□-♦	PKE596AC-HS□	50 100	2.0
RKS596B□D-HS□-♦	RKS596B□-HS□-◇	PKF596BC-HS	50, 100	3.9

Motor Cable φ6.5

5557-06R-210 (Molex)

■ Either **A** (Single-Phase 100-120 VAC) or **C** (Single-Phase 200-240 VAC) indicating the configuration is entered where is located within the product name.
■ A value indicating the Gear Ratio is entered where the box is located within the product name.
■ A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box is located within the product name.
■ These dimensions are for double shaft models. For single shaft models, ignore the areas.

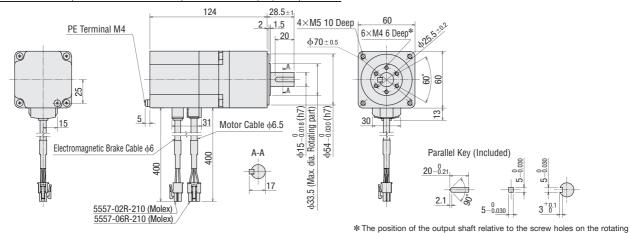

 $30^{-0.21}$

3.2

♦ Harmonic Geared Type with Electromagnetic Brake

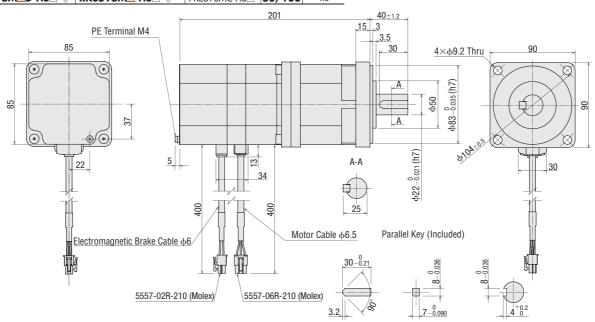
Frame Size 42 mm

Product Name		Motor Product	Gear	Massilia
Built-In Controller	Pulse Input	Name	Ratio	Mass kg
RKS543M D-HS□-♦	RKS543M□-HS□-♦	PKE543MC-HS□	50, 100	0.61



part is arbitrary.

part is arbitrary.

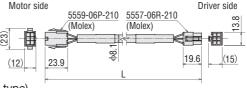

Frame Size 60 mm

Product Name		Motor Product	Gear	Mass kg
Built-In Controller	Pulse Input	Name	Ratio	Wass ky
RKS564M_D-HS	RKS564MU-HSU-	PKE564MC-HS	50, 100	1.5

Frame Size 90 mm

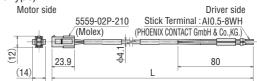
Product Name		Motor Product	Gear	Maga ka
Built-In Controller	Pulse Input	Name	Ratio	Mass kg
RKS596M D-HS -	RKS596MI-HSI-	PKE596MC-HS	50, 100	4.8

- Either A (Single-Phase 100-120 VAC) or C (Single-Phase 200-240 VAC) indicating the configuration is entered where 📃 is located within the product name.
- lacktriangle A value indicating the Gear Ratio is entered where the box \Box is located within the product name.
- A number indicating the desired length of 1 (1 m), 2 (2 m) or 3 (3 m) for the cable included with the product is entered where the box ♦ is located within the product name.

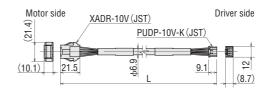

Cable for Motor (Included), Cable for Electromagnetic Brake (Included), Cable for Encoder (Included)

○Only with the type supplied with a connection cable

Common to All Types

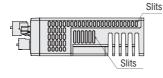

• Cable for Motor

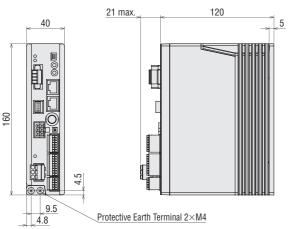
Cable Type	Length L (m)
Cable for Motor 1 m	1
Cable for Motor 2 m	2
Cable for Motor 3 m	3

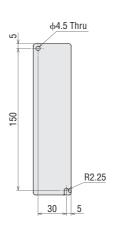

• Cable for Electromagnetic Brake (Only for electromagnetic brake type)

Cable for Motor	Cable Type
Cable for Motor 1 m	1
Cable for Motor 2 m	2
Cable for Motor 3 m	3

Cable for Encoder (Only for encoder type)


Cable for Motor	Cable Type
Cable for Motor 1 m	1
Cable for Motor 2 m	2
Cable for Motor 3 m	3




Drivers

♦ Built-In Controller Type

Mass: 0.8kg

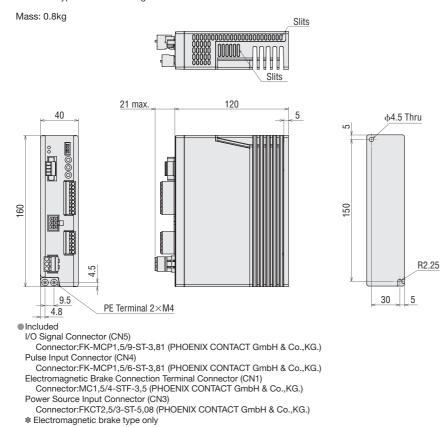
Accessories

Connector for Power Input Terminal (CN1)
Connector: MC1,5/4-STF-3,5 (PHOENIX CONTACT GmbH & Co.,KG.)

Connector for Sensor Signal (CN5)

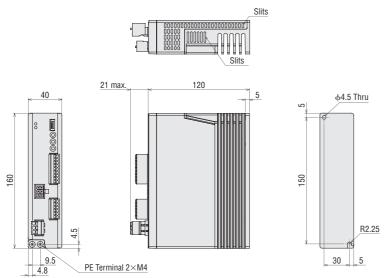
Connector: FK-MC0,5/5-ST-2,5 (PHOENIX CONTACT GmbH & Co.,KG.)

Connector for Input Signal (CN8)
Connector: FK-MC0,5/9-ST-2,5 (PHOENIX CONTACT GmbH & Co.,KG.)


Connector for Output Signal (CN9)

Connector: FK-MC0,5/7-ST-2,5 (PHOENIX CONTACT GmbH & Co.,KG.)

Connector for Regeneration Unit/Main Power Supply (CN3)
Connector: FKCT2,5/3-ST-5,08 (PHOENIX CONTACT GmbH & Co.,KG.)


♦ Pulse Input Type

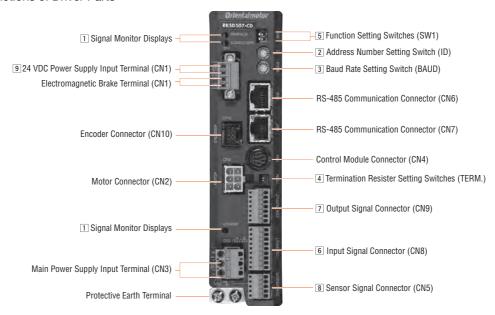
Standard Type with Electromagnetic Brake

Standard Type

Mass: 0.8kg

Included

I/O Signal Connector (CN5)


Connector:FK-MCP1,5/9-ST-3,81 (PHOENIX CONTACT GmbH & Co.,KG.)

Pulse Input Connector (CN4)
Connector:FK-MCP1,5/6-ST-3,81 (PHOENIX CONTACT GmbH & Co.,KG.)
Power Source Input Connector (CN3)

Connector:FKCT2,5/3-ST-5,08 (PHOENIX CONTACT GmbH & Co.,KG.)

Connection and Operation (Built-In Controller Type)

Names and Functions of Driver Parts

□ Signal Monitor Displays

♦ LED Indicators

Indication	Color	Function	When Activated		
PWR	Green	Power Supply Indication	er Supply Indication Lights when 24 VDC power is on.		
ALM	Red	Alarm Indication	Blinks when protective functions are activated.		
C-DAT	Green	Communication Indication	tion Lights when communication data is received or sent.		
C-ERR	Red	Communication Error Indication	Lights when there is an error with communication data.		
CHARGE	Red	Power On Indication	Lights when main power is supplied.		

2 Address Number Setting Switch (ID)

Indication	Switch Name	Function	
ID	Address Number Setting Switch	Set the address number for RS-485 communication (Factory Setting: 0).	

3 Baud Rate Setting Switch (BAUD)

Indication	Switch Name	Function
BAUD	Baud Rate Setting Switch	Set the baud rate for RS-485 communications (Factory Setting: 7).

♦ Setting the Baud Rate for RS-485 Communications

No.	Baud Rate (bps)
0	9600
1	19200
2	38400
3	57600
4	115200
5~6	Not used
7	625000 (Connect to Network Converter)
8~F	Not used

4 Termination Resistor Setting Switches (TERM.)

Indication	No.	Function			
TERM.	1	Set the termination resister (120 Ω) for RS-485 communication (Factory setting: OFF).			
1 EKIVI. 2		OFF : No termination resister ON : Set the termination resister			

^{*} Please use the same settings for both No. 1 and No. 2.

5 Function Setting Switches (SW1)

Indication	No.	Function				
SW1 1		Set the address number in combination with the address number setting switch (ID) (Factory setting: OFF).				
SWI	2	Set the protocol for RS-485 communication (Factory setting: OFF).				

♦ RS-485 Communication Protocol Setting

No. Destination	Connect to Network convertor	Modbus RTU Mode
2	0FF	ON

6 Input Signal Connector (CN8)

Indication	Pin No.	Signal Name	Initial Value			
	1	IN0	HOME	HOME Perform the return-to-home operation. START Perform the positioning operation.		
	2	IN1	START			
	3	IN2	MO			
4	IN3	M1	M1 The operating data number is selected using 3 bits.			
CN8 5		IN4	M2			
	6	IN5	FREE	Stop motor excitation and release the electromagnetic brake.		
7		IN6	ST0P	Stop the motor.		
	8	IN7	ALM-RST	Reset the current alarm.		
	9	IN-COM1		Input signal common		

^{*} Assigned functions are set by means of the parameter settings. The above is the initial value. For details, refer to the User's Manual.

The following input signals can be assigned to input terminals IN0~7.

Input Signal								
0 : Not used	5: SSTART	10: MS2	17: AW0 18: STOP	32: R0	37: R5	42: R10	47: R15	52: M4
1: FWD 2: RVS	6: +J0G 7: -J0G	11: MS3 12: MS4	24: ALM-RST	33: R1 34: R2	38: R6 39: R7	43: R11 44: R12	48: M0 49: M1	53: M 5
3: HOME 4: START	8: MS0 9: MS1	13: MS5 16: FREE	25: P-PRESET 27: HMI	35: R3 36: R4	40: R8 41: R9	45: R13 46: R14	50: M2 51: M3	

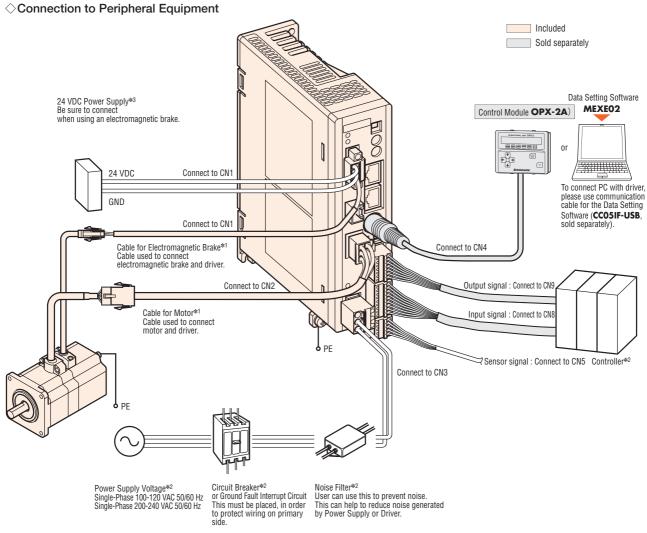
7 Output Signal Connector (CN9)

Indication	Pin No.	Signal Name	Initial Value		
	1	OUT0	HOME-P	Output when the motor is home.	
	2	OUT1	MOVE	Output while the motor is under operation.	
	3	OUT2	AREA1	Output when the motor is in area 1.	
CN9	4	OUT3	READY	Output when driver operation preparations have finished.	
	5	OUT4	WNG	The driver's warning status is output.	
	6	OUT5	ALM	The driver's alarm status is output (Point B).	
	7	OUT-COM		Output signal common	

^{*} Assigned functions are set by means of the parameter settings. The above is the initial value. For details, refer to the User's Manual.

The following output signals can be assigned to output terminals OUT0~5.

				Input Signal				
0: Not used	7: -J0G_R	16: FREE_R	36: R4	43: R11	50: M2_R	63: SLIT_R	73: AREA1	85: ZSG
1: FWD_R	8: MS0_R	17: AW0_R	37: R5	44: R12	51: M3_R	65: ALM	74: AREA2	86: MBC
2: RVS_R	9: MS1_R	18: STOP_R	38: R6	45: R13	52: M4_R	66: WNG	75: AREA3	
3: HOME_R	10: MS2_R	32: R0	39: R7	46: R14	53: M5_R	67: READY	80: S-BSY	
4: START_R	11: MS3_R	33: R1	40: R8	47: R15	60: +LS_R	68: MOVE	82: MPS	
5: SSTART_R	12: MS4_R	34: R2	41: R9	48: M0_R	61: -LS_R	70: HOME-P	83: STEPOUT	
6: +J0G_R	13: MS5_R	35: R3	42: R10	49: M1_R	62: HOMES_R	72: TIM	84: OH	

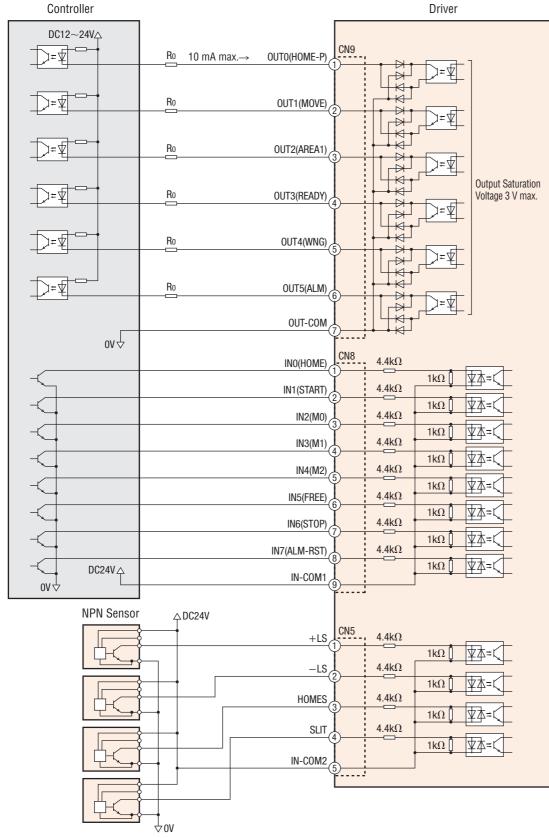

8 Sensor Signal Connector (CN5)

Indication	Pin No.	Signal Name	Initial Value
	1	+LS	+Side Limit Sensor Input
	2	-LS	-Side Limit Sensor Input
CN5	3	HOMES	Mechanical Home Sensor Input
	4	SLIT	Slit Sensor Input
	5	IN-COM2	Common for Sensor

9 24 VDC Power Input Terminal/Electromagnetic Brake Connection Terminal (CN1)

Indication	1/0	Terminal Name	Content
24V+	Input	24 VDC Power Input Terminal+	The power supply for the driver's control circuit terminal. Always connect
24V-	IIIput	24 VDC Power Input Terminal—	while operating.
MB1	Output	Electromagnetic Brake Connection Terminal- (Black)	Connect with the electromagnetic brake line of an electromagnetic brake type
MB2	Output	Electromagnetic Brake Connection Terminal+ (White)	motor.

Connection Diagram



- *1 The user can choose from Package with Cable (1 m, 2 m or 3 m) or Package without Cable.

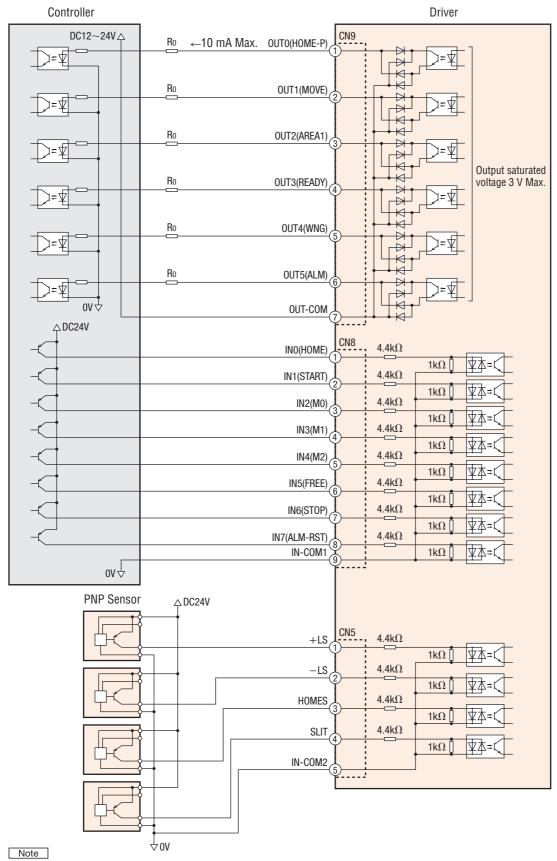
 If the user needs a cable longer than 3 m or a flexible cable, please select an appropriate cable from the acce
 - If the user needs a cable longer than 3 m or a flexible cable, please select an appropriate cable from the accessories (sold separately). Keep the wiring distance between the motor and driver to 20 m max.
- *2 Not Supplied.
- *3 Not Supplied. If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (sold separately), the 24 VDC±4% specification applies.

○ Connecting to a Host Controller

Connecting to a Current Sink Output Circuit

Note

[■] Use input signals at 24 VDC.
■ Use output signals at 12~24 VDC/10 mA or less. If the current exceeds 10 mA, connect an external resistor Ro to adjust current value to less than 10 mA.
■ The saturation voltage of the output signal is 3 VDC max.


Provide a minimum distance of 100 mm between the signal lines and power lines (Power supply lines, motor lines).

Do not run the signal lines in the same duct as power lines nor bundle them with power lines.

[•] If noise generated by the motor cable or power supply cable causes a problem with the specific wiring or layout, attach shield the cable or ferrite core.

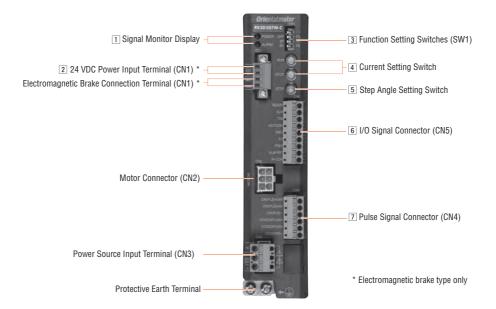
○Connecting to a Host Controller

Connecting to a Current Source Output Circuit

Use 24 VDC for the input signal.

Do not run the signal lines in the same duct or bundle them together.

[•] Use 12~24 VDC or less for the output signal, and 10 mA or less for the current. If the current exceeds 10 mA, connect an external resistor Ro to reduce the current to less than 10 mA.


• Output saturated voltage should be less than 3 V.

[•] Signal lines should be kept at least 100 mm away from power lines (power supply lines and motor lines).

[•] If noise generated by the motor cables or power supply cables causes a problem, try shielding the cables or using ferrite cores.

Connection and Operation (Pulse Input Type)

Names and Functions of Driver Parts

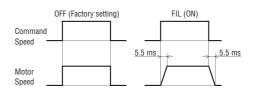
☐ Signal Monitor Display

♦LED Indicator

Indication	Color	Function	Lighting Condition
POWER	Green	Power Supply Indication	When the main power supply is input
ALARM	Red	Alarm Indication	When protective functions are activated (Blink).

♦ Alarm Contents

Blink Count	Function	Operating Condition	ALM-RST Release by Input	Motor Excitation
2	Main circuit overheating	The internal temperature of the driver exceeds 85°C.	Yes	
3	Overvoltage	The internal voltage of the driver exceeds the permissible value	No	
4	Command pulse abnormality	The value of the command pulse becomes abnormal	Yes	
5	Overcurrent	The motor, cable and driver out put circuit shorted out	No	
6	Undervoltage	Power supply is instantaneously shut down Undervoltage		No holding
7	Automatic control of electromagnetic brake abnormality	24 VDC power supply is not connected The electromagnetic brake is not connected The electromagnetic brake is mis-wired	Yes	No notaling
	Electrolytic capacitor abnormality	The electrolytic capacitor of the main circuit is damaged.		
9	EEPROM abnormality The saved data of the driver is damaged.		No	
Lighting	CPU abnormality	CPU malfunctions		


2 24 VDC Power Input Terminals/Electromagnetic Brake Connection Terminals (CN1)

		1	,		
Indication	1/0	Terminal Name	Content		
24 V+	Input	24 VDC Input Terminal +	anacta the 24 VDC navyay fay electromagnetic hydro		
24 V-	Input 24 VDC Input Terminal –		Connects the 24 VDC power for electromagnetic brake.		
MB1	Input	Electromagnetic Brake Connection Terminal- (Black)	Connect the electromagnetic brake wire of the meter with the electromagnetic brake		
MB2 Input		Electromagnetic Brake Connection Terminal+ (White)	Connect the electromagnetic brake wire of the motor with the electromagnetic brake.		

3 Function Setting Switch (SW1)

Indication	No.	Function
R1/R2	1	Sets up the step angle in combination with the step angle setting switch.
2P/1P	2	Switches between 1-pulse input mode and 2-pulse input mode. [2P] for the 2-pulse input mode [1P] for the 1-pulse input mode
OFF/FIL	3	Switches the responsiveness of the motor upon input of pulse.

Difference in the Motor Responsiveness Depending on the Command Filter (OFF/FIL Switch)

4 Current Setting Switch

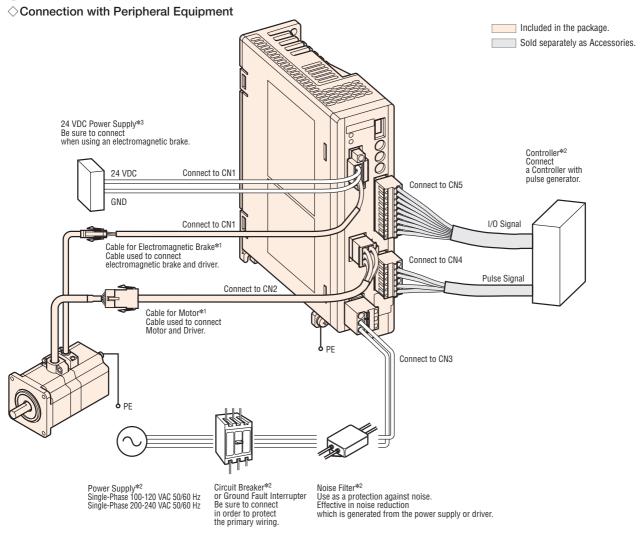
Indication	Switch Name	Function
RUN	Operating Current Setting Switch	Sets the motor's operating current. The current value is set by the ratio of rated output current (%).
ST0P	Stop Current Setting Switch	Sets the stopped current of the motor. The current value is set by the ratio of rated output current (%).

5 Step Angle Setting Switch

Indication	Function
STEP	Sets up step angle of the motor in combination with the function setting switch (SW1)

Function Setting Switch: R1							
Step Angle Setting Switch (STEP) Scale	Resolution [P/R]	Step Angle [°]	Microsteps/ Step				
0	500	0.72	1				
1	1000	0.36	2				
2	1250	0.288	2.5				
3	2000	0.18	4				
4	2500	0.144	5				
5	4000	0.09	8				
6	5000	0.072	10				
7	10000	0.036	20				
8	12500	0.0288	25				
9	20000	0.018	40				
A	25000	0.0144	50				
В	40000	0.009	80				
С	50000	0.0072	100				
D	62500	0.00576	125				
E	100000	0.0036	200				
F	125000	0.00288	250				

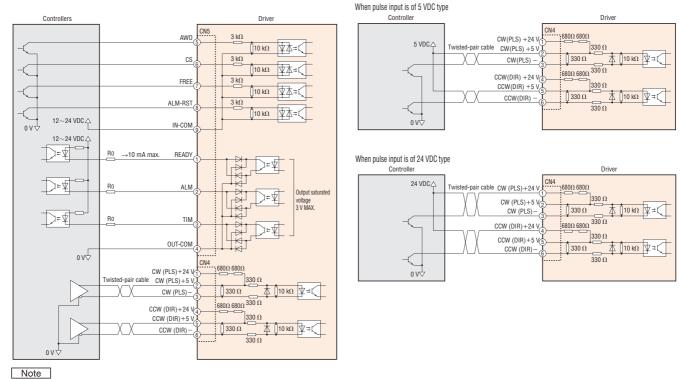
Function Setting Switch: R2							
Step Angle Setting Switch (STEP) Scale	Resolution [P/R]	Step Angle [°]	Microsteps/ Step				
0	200	1.8	0.4				
1	400	0.9	0.8				
2	600	0.6	1.2				
3	800	0.45	1.6				
4	1200	0.3	2.4				
5	1600	0.225	3.2				
6	3200	0.1125	6.4				
7	6000	0.06	12				
8	6400	0.05625	12.8				
9	7200	0.05	14.4				
Α	8000	0.045	16				
В	12000	0.03	24				
С	12800	0.028125	25.6				
D	16000	0.0225	32				
E	25600	0.0140625	51.2				
F	200000	0.0018	400				


6 I/O Signal Connector (CN5)

Indication	1/0	Pin Number	Content
READY		1	Outputs when operation of the driver has been prepared.
ALM	Output 2		Output alarm status of the driver (B contact).
TIM	Output	3	Outputs when excitation state of the motor is at step "0" position.
OUT-COM	4		Output common
AW0		5	Stops excitation of the motor.
CS		6	Switches the step angle.
FREE	Input	7	Stops excitation of the motor. With electromagnetic brake type, the electromagnetic brake is also released.
ALM-RST		8	Resets the current alarm.
IN-COM		9	Input common

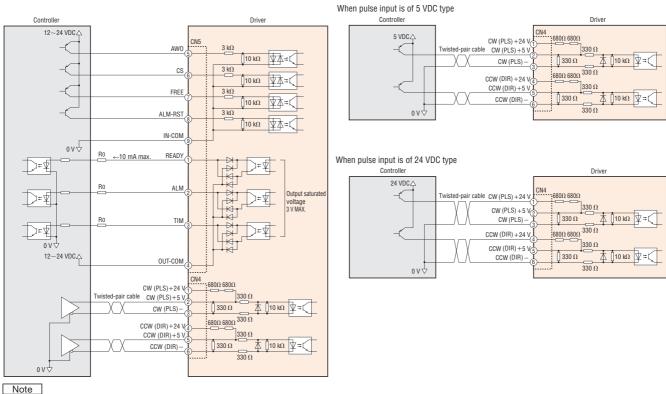
7 Pulse Signal Connector (CN4)

Indication	Pin Number	Content	
CW (PLS) +24 V	1	CW Pulse Input (Pulse Input) [+24 V]	
CW (PLS) +5 V	2	CW Pulse Input (Pulse Input)	
CW (PLS) -	3	[+5 V or line driver]	
CCW (DIR) +24 V	4	CCW Pulse Input (Rotation Direction Input) [+24 V]	
CCW (DIR) +5 V	5	CCW Pulse Input (Rotation Direction Input)	
CCW (DIR) -	6	[+5 V or line driver]	


Connection Diagram

- \$1 There are 2 types available, one with the cable which connects the motor and driver (1 m, 2 m, 3 m) and the other without any. If you need cables longer than 3 m or flexible extension cable, select from the accessories (Sold separately). When wiring the motor and the motor, keep a maximum distance of 20 m.
- *2 Not Supplied.
- *3 Not Supplied. If the wiring distance between the motor and driver is extended to 15 m or longer by using an accessory cable (Sold separately), the 24 VDC±4% specification applies.

Connection to Programmable Controller


• Connection Diagram for Current Sink Output Circuit When pulse input is Line Driver

- ●Use input signal at 12~24 VDC.
- Use output signal at 12~24 VDC 10 mA max. When the current value exceeds 10 mA, connect the external resistor R₀ to keep 10 mA max.
- Output saturated voltage should be less than 3V.
- Provide a minimum distance of 100 mm between the signal lines and power lines (Power supply lines, motor lines).
- Do not run the signal lines in the same duct as power lines or bundle them with power lines.

 If noise generated by the motor cable or power supply cable causes a problem with the specific wiring or layout, shield the cable or use ferrite cores.

• Connecting Diagram for Current Source Output Circuit When pulse input is Line Driver

- ■Use input signal at 12~24 VDC
- ■Use output signal at 12~24 VDC 10 mA max. When the current value exceeds 10 mA, connect the external resistor R₀ to keep 10 mA max.
- Output saturated voltage should be less than 3V.
- Provide a minimum distance of 100 mm between the signal lines and power lines (Power supply lines, motor lines).
- Do not run the signal lines in the same duct as power lines or bundle them with power lines.
- If noise generated by the motor cable or power supply cable causes a problem with the specific wiring or layout, shield the cable or use ferrite cores.

■ Motor and Driver Combinations

Product names for motor and driver combinations are shown below.

Built-In Controller Type

Туре	Product Name	Motor Product Name	Driver Product Nam
	RK\$543□□D-♦	PKE543□C	
	RK\$544□□D-♦	PKE544□C	RKSD503-D
	RKS545□□D-♦	PKE545□C	
	RK\$564□□D-♦	PKE564□C	
Standard Type	RK\$566□□D-♦	PKE566□C	
	RK\$569□□D-♦	PKE569□C	RKSD507-D
	RKS596□□D-♦	PKE596□C	KV2D201-
	RKS599□□D-♦	PKE599□C	
	RKS5913□□D-♦	PKE5913□C	
	RKS543M□D-♦	PKE543MC	
	RKS544M□D-♦	PKE544MC	RKSD503-D
	RKS545M□D-♦	PKE545MC	
	RKS564M□D-♦	PKE564MC	
tandard Type with lectromagnetic Brake	RKS566M□D-♦	PKE566MC	
lectromagnetic brake	RKS569M□D-♦	PKE569MC	
	RKS596MD-	PKE596MC	RKSD507-D
	RKS599M_D-♦	PKE599MC	1
	RKS5913M_D-♦	PKE5913MC	1
	RKS543R D2-	PKE543RC2	1
	RKS544R D2-	PKE544RC2	RKSD503-
	RKS545R D2-	PKE545RC2	
	RK\$564R D2-\(\triangle\)	PKE564RC2	1
Standard Type with	RKS566R D2-	PKE566RC2	1
ncoder	RKS569R D2-	PKE569RC2	1 _
	RKS596R D2-	PKE596RC2	RKSD507-D
	RKS599R_D2-\(\)	PKE599RC2	1
	RKS5913R D2-	PKE5913RC2	1
	RKS543 D-TS3.6-	PKE543 C-TS3.6	†
	RKS543 D-TS7.2-	PKE543 C-TS7.2	+
	RKS543 D-TS10-	PKE543 C-TS10	RKSD503-D
	RKS543 D-TS20-	PKE543□C-TS20	
	RKS543 D-TS30-	PKE543□C-TS30	╡
	RKS564 D-TS3.6-	PKE564□C-TS3.6	+
	RKS564 D-TS7.2-	PKE564□C-TS7.2	1
S Geared Type	RKS564 D-TS10-	PKE564 C-TS10	╡
ι ω ασαισά τ γ μσ	RKS564 D-TS20-	PKE564_C-TS10	+
	RKS564 D-TS30-	PKE564_C-TS30	+
	RKS596 D-TS3.6-	PKE596 C-TS3.6	RKSD507-D
	RK\$596 D-T\$7.2-\(\sigma\)	PKE596_C-TS7.2	+
	RK\$596 D-T\$10-\$	PKE596_C-TS10	+
	RKS596 D-TS20-		+
	RKS596D-1520-\(\)	PKE596 C-TS20	-
		PKE596□C-TS30 PKE543MC-TS3.6	
	RKS543M D-TS3.6-\(\rightarrow\)	PKE543MC-TS3.6 PKE543MC-TS7.2	-
	RKS543M D-TS7.2-\		DKODEOO TO
	RKS543M D-TS10-	PKE543MC-TS10 PKE543MC-TS20	RKSD503-D
	RKS543M D-TS20-		\dashv
	RKS543M D-TS30-	PKE543MC-TS30	
	RKS564M D-TS3.6-	PKE564MC-TS3.6	=
S Geared Type with	RKS564M_D-TS7.2-\(\triangle\)	PKE564MC-TS7.2	4
lectromagnetic Brake	RKS564M_D-TS10-	PKE564MC-TS10	4
•	RKS564M_D-TS20-	PKE564MC-TS20	4
	RKS564M_D-TS30-	PKE564MC-TS30	RKSD507-D
	RKS596M_D-TS3.6-♦	PKE596MC-TS3.6	
	RKS596M□D-TS7.2-♦	PKE596MC-TS7.2	_
	RKS596M□D-TS10-♦	PKE596MC-TS10	_
	RKS596MD-TS20-	PKE596MC-TS20	

[■] Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name.

Туре	Product Name	Motor Product Name	Driver Product Name	
	RKS545□D-PS5-♦	PKE545□C-PS5		
	RKS545 □ D-PS7.2-♦	PKE545 C-PS7.2		
	RKS545□□D-PS10-♦	PKE545□C-PS10	DI/ODEAS To	
	RKS543□□D-PS25-♦	PKE543 C-PS25	RKSD503-D	
	RKS543□□D-PS36-♦	PKE543□C-PS36		
	RKS543□□D-PS50-♦	PKE543□C-PS50		
	RK\$566 □ D-P\$5-♦	PKE566□C-PS5		
	RK\$566 □ D-P\$7.2-♦	PKE566 C-PS7.2		
D 60 17	RKS566D-PS10-♦	PKE566 C-PS10		
PS Geared Type	RKS564□□D-PS25-♦	PKE564□C-PS25		
	RK\$564□□D-P\$36-♦	PKE564□C-PS36		
	RKS564□□D-PS50-♦	PKE564□C-PS50	D.(00507 🗆	
	RKS599□■D-PS5-♦	PKE599□C-PS5	RKSD507-D	
	RKS599□□D-PS7.2-♦	PKE599□C-PS7.2		
	RKS599□□D-PS10-♦	PKE599□C-PS10		
	RK\$596□□D-P\$25-♦	PKE596□C-PS25		
	RK\$596□□D-P\$36-♦	PKE596□C-PS36	1	
	RKS596□□D-PS50-♦	PKE596□C-PS50		
	RKS545M□D-PS5-♦	PKE545MC-PS5		
	RK\$545M_D-P\$7.2-\(\triangle\)	PKE545MC-PS7.2		
	RKS545M□D-PS10-♦	PKE545MC-PS10	DKCDE03 DD	
	RKS543M□D-PS25-♦	PKE543MC-PS25	RKSD503-D	
	RKS543M□D-PS36-♦	PKE543MC-PS36		
	RKS543M□D-PS50-♦	PKE543MC-PS50		
	RKS566MD-PS5-	PKE566MC-PS5		
	RKS566M□D-PS7.2-♦	PKE566MC-PS7.2		
PS Geared Type with	RKS566MD-PS10-	PKE566MC-PS10		
Electromagnetic Brake	RKS564MD-PS25-	PKE564MC-PS25		
	RKS564M_D-PS36-	PKE564MC-PS36		
	RKS564M_D-PS50-	PKE564MC-PS50	RKSD507-D	
	RKS599M_D-PS5-	PKE599MC-PS5	TIKOBOOTB	
	RKS599M□D-PS7.2-♦	PKE599MC-PS7.2		
	RKS599M□D-PS10-♦	PKE599MC-PS10		
	RKS596MD-PS25-	PKE596MC-PS25		
	RKS596MD-PS36-	PKE596MC-PS36		
	RKS596MD-PS50-	PKE596MC-PS50		
	RKS543 D-HS50-	PKE543 C-HS50	RKSD503-D	
	RKS543 □ D-HS100-♦	PKE543 C-HS100		
Harmonic Geared Type	RK\$564 D-H\$50-	PKE564 C-HS50	4	
	RK\$564 D-H\$100-\(\)	PKE564 C-HS100	RKSD507-D	
	RKS596 D-HS50-	PKE596 C-HS50		
	RK\$596□□D-H\$100-♦	PKE596 C-HS100		
	RKS543MD-HS50-	PKE543MC-HS50	RKSD503-D	
Harmonic Geared Type	RKS543M D-HS100-0	PKE543MC-HS100		
with Electromagnetic	RKS564M D-HS50-	PKE564MC-HS50	RKSD507-D	
Brake	RKS564MD-HS100-	PKE564MC-HS100		
	RKS596MD-HS50-	PKE596MC-HS50		
	RKS596M□D-HS100-♦	PKE596MC-HS100		

[■] Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name.

Pulse Input Type

Туре	Product Name	Motor Product Name	Driver Product Name	
	RKS543□□-◇	PKE543□C		
	RK\$544□□-◇	PKE544□C	RKSD503-	
	RK\$545□□-◇	PKE545□C		
	RK\$564□□-◇	PKE564□C		
Standard Type	RK\$566□□-◇	PKE566□C		
	RK\$569□□-◇	PKE569□C	DI/ODE07	
	RK\$596□□-◇	PKE596□C	RKSD507-	
	RKS599□□-◇	PKE599□C		
	RKS5913□-◇	PKE5913□C		
	RK\$543M□-◇	PKE543MC		
	RK\$544M <u></u> -◇	PKE544MC	RKSD503M-	
	RK\$545M□-◇	PKE545MC		
o	RK\$564M□-♦	PKE564MC		
Standard Type with Electromagnetic Brake	RK\$566M□-◇	PKE566MC		
Lieutomagnetic brake	RK\$569M□-♦	PKE569MC	DI/ODEOZNA 🗆	
	RK\$596M□-♦	PKE596MC	RKSD507M-	
	RKS599M□-◇	PKE599MC		
	RKS5913M□-♦	PKE5913MC		
	RKS543□■-TS3.6-♦	PKE543 C-TS3.6		
	RKS543□□-TS7.2-♦	PKE543 C-TS7.2		
	RKS543□■-TS10-♦	PKE543□C-TS10	RKSD503-	
	RKS543□□-TS20-♦	PKE543□C-TS20		
	RKS543□□-TS30-♦	PKE543□C-TS30		
	RK\$564□□-T\$3.6-♦	PKE564□C-TS3.6		
	RK\$564□■-T\$7.2-♦	PKE564□C-TS7.2		
TS Geared Type	RK\$564□■-T\$10-♦	PKE564□C-TS10		
	RK\$564□■-T\$20-♦	PKE564□C-TS20		
	RK\$564□■-T\$30-♦	PKE564□C-TS30	RKSD507-	
	RKS596□■-TS3.6-♦	PKE596□C-TS3.6		
	RKS596□■-TS7.2-♦	PKE596□C-TS7.2		
	RKS596□■-TS10-♦	PKE596□C-TS10		
	RKS596□■-TS20-♦	PKE596□C-TS20		
	RKS596□■-TS30-♦	PKE596□C-TS30		
	RKS543M□-TS3.6-♦	PKE543MC-TS3.6		
	RKS543M□-TS7.2-♦	PKE543MC-TS7.2		
	RKS543M□-TS10-♦	PKE543MC-TS10	RKSD503M-	
	RKS543M□-TS20-♦	PKE543MC-TS20		
	RKS543M□-TS30-♦	PKE543MC-TS30	7	
	RKS564M□-TS3.6-♦	PKE564MC-TS3.6		
	RKS564MTS7.2-\(\triangle\)	PKE564MC-TS7.2		
TS Geared Type with	RKS564M□-TS10-♦	PKE564MC-TS10	7	
Electromagnetic Brake	RKS564M□-TS20-♦	PKE564MC-TS20	1	
	RKS564M□-TS30-♦	PKE564MC-TS30	DI CODECTION TO	
	RKS596M□-TS3.6-♦	PKE596MC-TS3.6	RKSD507M-	
	RKS596MTS7.2-\(\triangle\)	PKE596MC-TS7.2	-	
	RKS596M□-TS10-♦	PKE596MC-TS10		
	RKS596M□-TS20-♦	PKE596MC-TS20		
	RKS596M -TS30-♦	PKE596MC-TS30	+	

■ Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name.

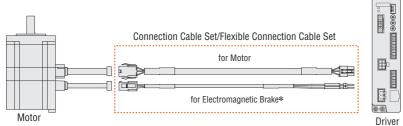
Туре	Product Name	Motor Product Name	Driver Product Name	
71.	RKS545□-PS5-♦	PKE545□C-PS5		
	RKS545□□-PS7.2-♦	PKE545□C-PS7.2		
	RKS545□□-PS10-♦	PKE545□C-PS10		
	RKS543□□-PS25-◇	PKE543□C-PS25	RKSD503-	
	RKS543□□-PS36-♦	PKE543 C-PS36		
	RKS543□□-PS50-♦	PKE543 C-PS50		
	RKS566□□-PS5-◇	PKE566□C-PS5		
	RK\$566□□-P\$7.2-♦	PKE566□C-PS7.2		
D6 0 17	RK\$566□□-P\$10-♦	PKE566□C-PS10		
PS Geared Type	RKS564□□-PS25-◇	PKE564□C-PS25		
	RKS564□■-PS36-◇	PKE564□C-PS36		
	RKS564□■-PS50-♦	PKE564□C-PS50	DIVODEOZ 🗆	
	RKS599□□-PS5-◇	PKE599□C-PS5	RKSD507-	
	RKS599□□-PS7.2-♦	PKE599□C-PS7.2		
	RKS599□■-PS10-♦	PKE599□C-PS10		
	RKS596□■-PS25-♦	PKE596□C-PS25		
	RKS596□□-PS36-◇	PKE596□C-PS36		
	RKS596□□-PS50-♦	PKE596□C-PS50		
	RKS545M□-PS5-♦	PKE545MC-PS5		
	RK\$545M □ -P\$7.2-♦	PKE545MC-PS7.2		
	RKS545M□-PS10-♦	PKE545MC-PS10	RKSD503M-	
	RKS543M□-PS25-♦	PKE543MC-PS25	UKODOOM-	
	RKS543M□-PS36-♦	PKE543MC-PS36		
	RKS543M□-PS50-♦	PKE543MC-PS50		
	RKS566M□-PS5-♦	PKE566MC-PS5		
	RKS566M□-PS7.2-♦	PKE566MC-PS7.2		
PS Geared Type with	RK\$566M □ -P\$10-♦	PKE566MC-PS10		
Electromagnetic Brake	RKS564M □ -PS25-♦	PKE564MC-PS25		
	RKS564M □ -PS36-♦	PKE564MC-PS36		
	RKS564M <u></u> -PS50-♦	PKE564MC-PS50	RKSD507M-	
	RKS599MPS5-	PKE599MC-PS5		
	RKS599M□-PS7.2-♦	PKE599MC-PS7.2		
	RKS599M -PS10-	PKE599MC-PS10		
	RKS596M□-PS25-♦	PKE596MC-PS25		
	RKS596M□-PS36-♦	PKE596MC-PS36		
	RKS596M□-PS50-♦	PKE596MC-PS50		
	RKS543	PKE543 C-HS50	RKSD503-	
	RKS543	PKE543 C-HS100		
Harmonic Geared Type	RK\$564 H\$50-	PKE564 C-HS50		
	RK\$564H\$100-\	PKE564 C-HS100	RKSD507-	
	RKS596 HS50-	PKE596 C-HS50	-	
	RKS596 HS100-	PKE596 C-HS100 PKE543MC-HS50		
	RKS543M -HS50-	PKE543MC-HS50 PKE543MC-HS100	RKSD503M-	
Harmonic Geared Type	RKS543M -HS100-	PKE543MC-HS100 PKE564MC-HS50		
with Electromagnetic	RKS564M -HS50-	PKE564MC-HS100	-	
Brake		PKE594MC-HS100 PKE596MC-HS50	RKSD507M-	
	RKS596M -HS50-	PKE596MC-HS100	_	
	RKS596M□-HS100-♦	LVE390IAIC-U9100		

[■] Either **A** (Single shaft) or **B** (Double shaft) indicating the motor shaft configuration is entered where the box ☐ is located within the product name. Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box ☐ is located within the product name. A number indicating the desired length of **1** (1 m), **2** (2 m) or **3** (3 m) for the cable included with the product is entered where the box ♦ is located within the product name. If the package do not include the cable, ♦ is not exists in the product name.

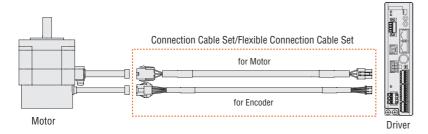
Accessories (Sold Separately)

Connection Cable Sets (ROHS), Flexible Connection Cable Sets (ROHS) Extension Cable Sets (ROHS), Flexible Extension Cable Sets (ROHS)

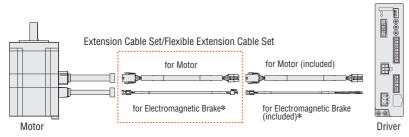
Cable connects the Motor to Driver for **RKII** series, we provide both of "with cable package (1 m, 2 m or 3 m)" and "without cable package", the user can choose either meet the requirement.

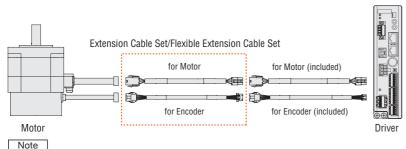

If the user need a cable longer than 3 m or flexible cable, please select an appropriate cable from among the accessories (sold separately).

Keep the wiring distance between the motor and driver to 20 m max.


System Configuration

Connect the motor and driver without using the cable which came with the product. Use a connection cable set Use a flexible cable set if the cable will be bend.


○ For Standard Type or Standard Type with Electromagnetic Brake


- * Electromagnetic Brake Cable is required for the Motor with Electromagnetic Brake.
- ○For Motor with Encoder

- Connect and extend the Motor and Driver by using cable included in package
 Use the Extension Cable Set combination with the cable came with the product.
 Use a flexible cable set if the cable will be bend.
- ♦ For Standard Type or Electromagnetic Brake Motor

- st Electromagnetic Brake Cable is required for the Motor with Electromagnetic Brake

• Keep the total cable length below 20 m when connecting a cable included in the **RKII** Series and an extension cable.

The cable on the Electromagnetic Brake or Encoder cannot be connected to the driver directly. To connect to the driver, connection cable (accessory, sold separately) is needed. Otherwise please select the package which comes with the connection cable (The package includes connection cable).

Connection Cable Sets Flexible Connection Cable Sets

♦ For Electromagnetic Brake Motor

- Product Line
- Connection Cable Sets
- **♦ For Standard Motor**

Motor Cable

Product Name	Length L (m)
CC010VPF	1
CC020VPF	2
CC030VPF	3
CC050VPF	5
CC070VPF	7
CC100VPF	10
CC150VPF	15
CC200VPF	20

Electromagnetic Brake Cable

WOOD OUDIC	Licotromagneti
Product Name	Length L (m)
CC010VPFB	1
CC020VPFB	2
CC030VPFB	3
CC050VPFB	5
CC070VPFB	7
CC100VPFB	10
CC150VPFB	15
CC200VPFB	20

♦ For Encoder Motor

Motor Cable	Encode	r Cable
Product Name	Length L (m)	
CC010VPFE	1	
CC020VPFE	2	
CC030VPFE	3	
CC050VPFE	5	
CC070VPFE	7	
CC100VPFE	10	
CC150VPFE	15	
CC200VPFE	20	

Flexible Connection Cable Sets

Motor Cable

motor odbio	
Product Name	Length L (m)
CC010VPR	1
CC020VPR	2
CC030VPR	3
CC050VPR	5
CC070VPR	7
CC100VPR	10
CC150VPR	15
CC200VPP	20

♦ For Electromagnetic Brake Motor

Motor Cable

Encoder Cable

Electromagnetic Brake Cable

Product Name	Length L (m)
CC010VPRB	1
CC020VPRB	2
CC030VPRB	3
CC050VPRB	5
CC070VPRB	7
CC100VPRB	10
CC150VPRB	15
CC200VPRB	20

Product Name Length L (m) CC010VPRE CC020VPRE CC030VPRE

CC050VPRE CC070VPRE CC100VPRE 10 CC150VPRE 15 CC200VPRE 20

Extension Cable Sets (Rolls), Flexible Extension Cable Sets (Rolls)

- Product Line
- Extension Cable Sets ○For Standard Motor

Motor Cable

Product Name	Length L (m)
CC010VPF	1
CC020VPF	2
CC030VPF	3
CC050VPF	5
CC070VPF	7
CC100VPF	10
CC150VPF	15

Flexible Extension Cable Sets

Motor Cable

Product Name	Length L (m)
CC010VPR	1
CC020VPR	2
CC030VPR	3
CC050VPR	5
CC070VPR	7
CC100VPR	10
CC150VPR	15

Brake Cable

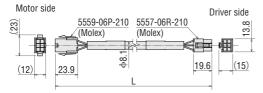
Motor Cable	Electromagnetic Brake				
Product Name	Length L (m)				
CC010VPFBT	1				
CC020VPFBT	2				
CC030VPFBT	3				
CC050VPFBT	5				
CC070VPFBT	7				
CC100VPFBT	10				
CC150VPFBT	15				

♦ For Electromagnetic Brake Motor

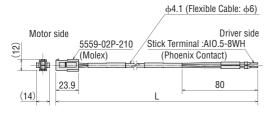
CC010VPRBT	1		
Product Name	Length L (m)		
Motor Cable E	Electromagneti	c Brake	Cable

1 Toddot Name	Longin L (III)
CC010VPRBT	1
CC020VPRBT	2
CC030VPRBT	3
CC050VPRBT	5
CC070VPRBT	7
CC100VPRBT	10
CC150VPRBT	15

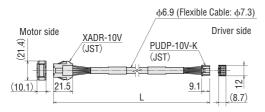
Encode	Cable
Length L (m)	
1	
2	
3	
5	
7	
10	
15	
	1 2 3 5 7

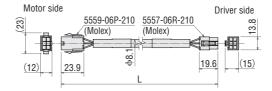


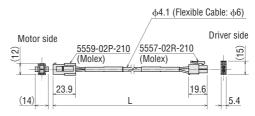
Motor Cable	Encoder Cabl		
Product Name	Length L (m)		
CC010VPRET	1		
CC020VPRET	2		
CC030VPRET	3		
CC050VPRET	5		
CC070VPRET	7		
CC100VPRET	10		
CC150VPRFT	15		


Dimensions Unit = mm (in.)

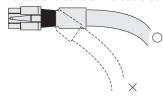
Connection Cable

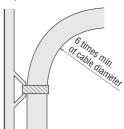




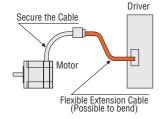


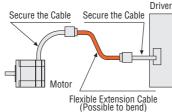
Extension Cable





■ Notes on Use of a Flexible Cable


(1) Do not allow the cable to bend at the cable connector.



② For the bending radius, use at six times or more of the cable diameter.

- (3) The cable wired from the motor or the cable comes as a set of the motor should not be bended. Use a flexible motor cable, if the cable will be bend.
 - Flexible Connection Cable
- Flexible Extension Cable

Flexible Couplings

Flexible Couplings compatible for **RKII** series are available.

The user can select easily depending on size/purpose of the motor or gear.

Coupling Selection

Motor Type Coupling Type	Standard Type	TS Geared Type PS Geared Type Harmonic Geared Type		
MCV Coupling	0	_	High accuracy positioning, control vibration	
MCS Coupling	0	0	High strength and High accuracy positioning	

Models and characteristics of coupling

MCV Couplings

One piece contains antivibration rubber and aluminum base alloy.

High in torsional stiffness because it has same characteristics for both normal rotation and reverse rotation, suitable for high accuracy positioning operation for stepping motor.

- An antivibration rubber reduces the vibration generated at the motor.
- High response.
- No backlash.
- Electrical insulating properties.

MCS Couplings

This coupling has three pieces structure contains an Aluminum Hub, a spider (material: polyurethane). The simple structure can transmit high-torque such as torque on geared type reliably.

♦ Features

- High strength (usable for geared motor) is now available.
- No backlash.
- Controls the vibration generated by the motor.

Selecting a Coupling

Standard Type

The following examples explain the procedures in selecting a coupling by driven shaft diameter and product name.

Example: Product Name: **RK\$566AC-1** Driven Shaft Diameter: φ8 mm

- 1. The coupling type that matches RK\$566AC-1 from the coupling selection table is MCV25.
- 2. The inner diameter of the coupling according to the motor shaft will be **10** (ϕ 10 mm), and will be **8** (ϕ 8 mm) according to the driven shaft diameter.
- 3. In the coupling product name, smaller inner diameters come before larger ones, thus the coupling product name will be **MCV250810**, **MC250810S** (Set screw type).
- When the inner diameter is φ6.35 mm, the number is **06A**. For example, when the coupling type is **MCV25**, the motor shaft diameter is **10** (φ10 mm), and the driven shaft diameter is **06A** (φ6.35 mm), the coupling product name will be **MCV2506A10**.

TS Geared Type, PS Geared Type and Harmonic Geared Type

The following examples explain the procedures in selecting a coupling by driven shaft diameter and product name.

Example: Product Name: **RKS545AC-PS10-1** Driven Shaft Diameter: φ12 mm

- 1. The coupling type that matches **RKS545AC-PS10-1** from the coupling selection table is **MCS30**.
- 2. The inner diameter of the coupling according to the motor shaft will be 10 (φ10 mm), and will be 12 (φ12 mm) according to the driven shaft diameter.
- 3. In the coupling product name, smaller inner diameters come before larger ones, thus the coupling product name will be MC\$301012.
- When the inner diameter is φ6.35 mm, the number is F04. For example, when the coupling type is MCS30, the motor shaft diameter is 06 (φ6 mm), and the driven shaft diameter is F04 (φ6.35 mm), the coupling product name will be MCS3006F04.

MCV Couplings ® BBS

Product Line

Product Name
MCV15
MCV19
MCV25
MCV30

■ A number indicating the coupling inner diameter is entered where the box

is located within the product


Product Number Code

MCV 30 10 14

1	2	3	4

1	MCV Couplings
2	Outer Diameter of Coupling
3	Inner Diameter d1 (smaller inner diameter) (06A represents ϕ 6.35 mm)
(A)	Inner Diameter d2 (larger inner diameter) (064 represents 46.35 mm)

For inner diameter d1, the smaller of the motor shaft diameter or the driven shaft diameter is entered. For inner diameter d2, the larger of the motor shaft diameter or the driven shaft diameter is entered.

Coupling Selection Table

- Coupling is selected based on the following content.
 - · The motor output torque is within the generic torque for coupling.
 - · Motor shaft diameter

				Motor Shaft				Dr	iven Sha	aft Diam	eter r	nm		
Type	Frame Size	Product Name	Coupling Type	Dian	Diameter		05	06	06A	80	10	12	14	15
				mm		ф4	ф5	ф6	ф6.35	ф8	ф10	ф12	ф14	ф15
	42 mm	RKS543 RKS544 RKS545	MCV15	06	ф6	•	•	•						
Standard Type	60 mm	RKS564 RKS566 RKS569	MCV25	10	ф10			•	•	•	•	•		
	85 mm	RKS596 RKS599 RKS5913	MCV30	14	ф14					•	•	•	•	•

[•] The applicable product name includes the characters that can distinguish the product name.

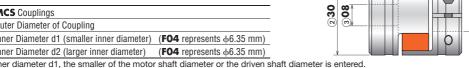
For more detail, refer to our website or contact to the customer center.

http://www.orientalmotor.eu

MCS Couplings ®HS

Product Line

Product Name
MCS20
MCS30□
MCS40
MCS55
MCS65


A number indicating the coupling inner diameter is entered where the box $\hfill\Box$ is located within the product name.

Product Number Code

MCS 30 08 12

1	2	3	4

1	MCS Couplings	
2	Outer Diameter of Coupling	
3	Inner Diameter d1 (smaller inner diameter)	(FO4 represents ϕ 6.35 mm)
4)	Inner Diameter d2 (larger inner diameter)	(FO4 represents φ6.35 mm)

For inner diameter d1, the smaller of the motor shaft diameter or the driven shaft diameter is entered. For inner diameter d2, the larger of the motor shaft diameter or the driven shaft diameter is entered.

Coupling Selection Table

- Coupling is selected based on the following content.
 - · The motor output torque is within the generic torque for coupling.
 - · Motor shaft diameter

	F			0	Motor	Shaft						Driven	Shaft	Diamet	er mm					
Type Frame Size Product Nan	Product Name	Gear Ratio Coupling Type		neter	05	06	F04	08	10	12	14	15	16	18	20	22	24	25		
	3126			турс	m	ım	ф5	ф6	ф6.35	ф8	ф10	φ12	ф14	ф15	ф16	ф18	ф20	ф22	ф24	ф25
	42 mm	RK\$543	3.6, 7.2, 10, 20, 30	MCS20	06	ф6	•	•	•	•	•									
TS Geared Type	60 mm	RKS564	3.6, 7.2, 10, 20, 30	MCS30	10	ф10		•	•	•	•	•	•	•	•					
	90 mm	90 mm RKS596	3.6, 7.2, 10, 20, 30	MCS55	18	ф14						•	•	•	•	•	•	•	•	
		DIVERAE	5, 7.2	MCS20	10	ф10			•											
	42 mm RKS545 RKS543	KK3545	10	MCS30	10	ф10					•									
		RKS543	25, 36, 50	MCS40	10	ф10														
		RKS566	5	MCS40	12	ф12														
PS Geared Type	60 mm		7.2, 10	MCS55	12	ф12						•					•			
		RKS564	25, 36, 50	MCS55	12	ф12						•	•		•		•	•		
		RKS599	5	MCS55	18	ф18						•	•		•		•	•		
	90 mm		7.2, 10	MCS65	18	ф18														
		RKS596	25, 36, 50	MCS65	18	ф18									•		•	•		•
	42 mm RKS543		MCS40	10	ф10				•	•	•	•	•	•	•	•				
Harmonic Geared Type 60 mm	60 mm	RKS564	50, 100	MCS55	15	ф15						•	•	•	•	•	•	•	•	
	90 mm	RKS596		MCS65	22	ф22										•	•			

[●] The applicable product name includes the characters that can distinguish the product name.

For more detail, refer to our website or contact to the customer center.

http://www.orientalmotor.eu

Motor Mounting Brackets ®

Mounting brackets are convenient for installation and securing a stepping motor and geared stepping motor.

Product Line

Standard Type

Material: Aluminum Alloy

Material. 7 delinitarii 7 dioy						
Product Name	Motor Frame Size	Applicable Product				
PAFOP	42 mm	RKS543 RKS544				
PALOP	42 111111	RK\$544				
PAL2P-5	60 mm	RKS564 RKS566 RKS569				
PAL4P-5	85 mm	RKS596 RKS599 RKS5913				

- The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction.
- These mounting brackets can be perfectly fitted to the pilot of the stepping motors. (Except for PALOP)

■ TS Geared Type Material: Aluminum Alloy

Product Name	Motor Frame Size	Applicable Product
SOLOB	42 mm	RKS543
SOL2M4	60 mm	RKS564
SOL5M8	90 mm	RKS596

PS Geared Type Material: SS400

Surface Treatment: Electroless nickel plating

Product Name	Motor Frame Size	Applicable Product
PLA60G	60 mm	RK\$564 RK\$566
PLA90G	90 mm	RKS596 RKS599

- The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction.
- Motor Mounting Screws are included.

Harmonic Geared Type

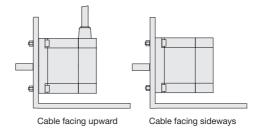
Material: SS400

Surface Treatment: Electroless nickel plating

Product Name	Motor Frame Size	Applicable Product
PLA60H	60 mm	RK\$564
PLA90H	90 mm	RKS596

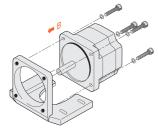
- Fixed portion on mounting bracket is slotting shaped, it make easy to adjust tension of belt after mounting the motor.
- Motor Mounting Screws are included.

The other shapes of mounting bracket are also available.

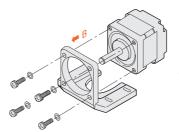

For more detail, please contact to our branch/ sales office or visit our website.

http://www.orientalmotor.eu

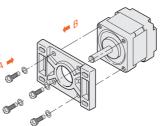
■ Motor Mounting Direction


The motor cable comes out at right angles to the motor. Orient the motor so that the cable faces either upward or sideways.

• For PLA60G, PLA90G, PLA60H, PLA90H: The cable can face downward.


How to mount the motor

1 PAL2P-5, PAL4P-5 SOL2M4, SOL5M8


- ①Use the screws provided to secure the motor to the mounting bracket.
- ② Attach the motor from the direction shown by the arrow (B).

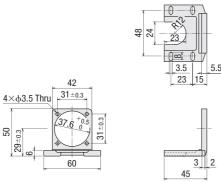
2 PALOP, SOLOB



- ①Use the screws provided to secure the motor to the mounting bracket.
- ② Attach the motor from the direction shown by the arrow

3 PAFOP

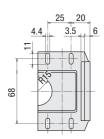
- ①Use the screws provided to secure the motor to the mounting bracket.
- ② Attach motor from the direction shown by either arrow (A) or arrow (B).

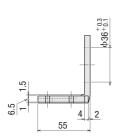


- ①Use the screws provided to secure the motor to the mounting bracket.
- ② Attach the motor from the direction shown by the arrow (B).
- *Motor mounting hole on **PLA90H** is processed with tapping. Insert the screw from direction B.

Dimensions (Unit = mm)

PALOP

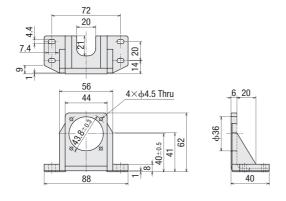

Mass : 35 g



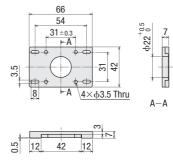
Mounting Screws : M3 Length 10 mm Included 4 pieces

PAL2P-5

Mass : 110 g

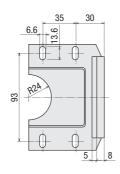


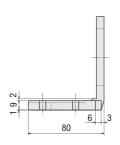
Mounting Screws : M4 Length 12 mm Included 4 pieces


SOLOB

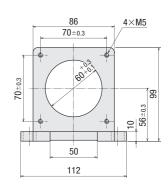
Mass : 85 g

PAFOP

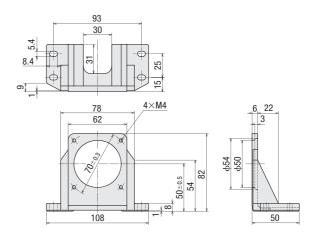

Mass : 30 g



Mounting Screws : M3 Length 7 mm Included 4 pieces


PAL4P-5

Mass : 250 g



Mounting Screws : M5 Length 16 mm Included 4 pieces

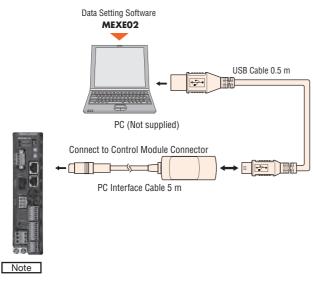
SOL2M4

Mass : 135 g

DIN rail mounting bracket ® B

Use to mount the driver on DIN rail.

[●] DIN rail should be mounted on highly thermal conductive flat metal plate (comparable to 200 mm x 200 mm x 2 mm). Be sure to keep the ambient temperature of the driver 0~+40°C.


Communication Cable for Data Setting Software

The cable to connect the PC with data setting software and driver installed.

Product Line

Product Name	Applicable Product	
CC05IF-USB	Built-in Controller Type	

Connection between Computer and Driver

To connect with PC, exclusive device driver should be installed.

Data Setting Software MEXE02

Data Setting Software can be downloaded from our website.

For more detail, please contact our website or contact our branch/sales office.

http://www.orientalmotor.eu

Operating Environment

Operating Systems

Microsoft Windows 2000 Professional Service Pack 4
 Rollup 1 provided by Microsoft Corp. must be applied.
 To confirm application of Rollup 1, please check it at "Add or Remove Programs."

For following OS, supports only 32-bit (x86) or 64-bit (x64) version.

- Microsoft Windows XP Home Edition Service Pack 3
- Microsoft Windows XP Professional Service Pack 2
- Microsoft Windows XP Professional Service Pack 3*
- Microsoft Windows Vista Home Basic Service Pack 2
- Microsoft Windows Vista Home Premium Service Pack 2
- Microsoft Windows Vista Business Service Pack 2
- Microsoft Windows Vista Ultimate Service Pack 2
- Microsoft Windows Vista Enterprise Service Pack 2
- Microsoft Windows 7 Starter Service Pack 1
- Microsoft Windows 7 Home Premium Service Pack 1
- Microsoft Windows 7 Professional Service Pack 1
- Microsoft Windows 7 Ultimate Service Pack 1
- Microsoft Windows 7 Enterprise Service Pack 1
- Microsoft Windows 8
- * Supports 32-bit (x86) version only

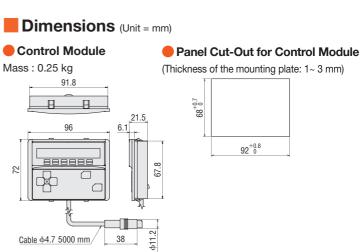
Computer

Recommended CPU*1	Intel Core Processor 2 GHz or more (The OS must be supported.)
Display	high resolution video adapter and monitor, XGA (1024x768) or more.
Recommended Memory*1	32-bit (x86) version: 1 GB or more 64-bit (x64) version: 2 GB or more
Hard Disk*2	Available disk space of 30 MB or more
USB Port	USB 1.1 1 port

- *1 The OS operating conditions must be satisfied.
- *2 Microsoft .NET Framework 4 Client Profile is required to use MEXEO2. If it is not already installed, it will be installed automatically, in which case up to 1.5 GB MB of additional space is required.
- Windows and Windows Vista are registered trademark of Microsoft Corporation in the United States and other countries. Pentium is a trademark of Intel Corporation.
- Please refer to our website for the latest update of operating environment.

Note

• The required volume of memory or hard disk may vary depending on the system environment.


Control Module ROHS

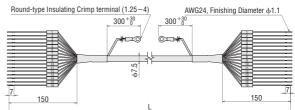
The internal driver parameter settings and data settings can be established and changed. They can also be used for speed and I/O monitoring, teaching, and so on.

Product Line

Product Name	Applicable Product
OPX-2A	Built-in Controller Type

Driver Cable

General-Purpose Cables ®

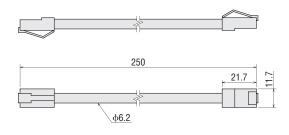


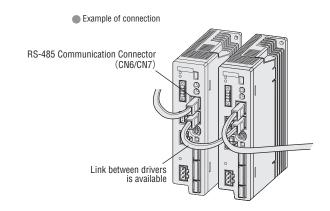
General-purpose multiconductor cable wich is convenient for connection between the driver and the host controller.

Product Line

Product Name	Length (m)
CC16D005B-1	0.5
CC16D010B-1	1.0
CC16D015B-1	1.5
CC16D020B-1	2.0

Dimensions (Unit = mm)


RS-485 Communication Cable ® B


The cable is to link drivers when the driver is being operated under multi-axis mode, it also connects the network converter and driver.

Product Line

Product Name	Length (m)	Applicable Product
CC002-RS4	0.25	Built-in Controller Type

Network Convertors ® BB

Network converter is a transducer from the host communication protocol to our unique RS-485 communication protocol. By using this network converter, our RS-485 compatible products can be controlled under host communication environment.

Product Line

Network Type	Product Name
EtherCAT Compatible	NETCO1-ECT
CC-Link Ver. 1.1 Compatible	NETC01-CC
CC-Link Ver. 2 Compatible	NETC02-CC
MECHATROLINK - II Compatible	NETC01-M2
MECHATROLINK - III Compatible	NETC01-M3

Controllers ®HS

Use the **SCX11** controller as a stored program controller to connect to any or Oriental Motor's standard pulse input drivers. The SCX11 is also able to control the motor via various serial ports such as USB, RS-232C and CANopen.

- Easy Installation
- Easy Operation, Friendly PC Software (Windows GUI software)
- Two Types of Operation: Direct Command Operation and Executing Sequence Operation (Stored Program Function)

Product Line

Product	Name	Driver Product Name
SCX11		RKSD503-□, RKSD507-□, RKSD503M-□, RKSD507M-□

Either **A** (single-phase 100-120 VAC) or **C** (single-phase 200-240 VAC) indicating the power supply input is entered where the box \Box is located within the product name.

Oriental motor

These products are manufactured at plants certified with the international standards ISO 9001 (for quality assurance) and ISO 14001 (for systems of environmental management).

Specifications are subject to change without notice. This catalogue was published in June 2016.

ORIENTAL MOTOR (EUROPA) GmbH

www.orientalmotor.de

European Headquarters

Schiessstraße 74 40549 Düsseldorf, Germany Tel: 0211–520 670 Fax: 0211–520 670 99

ORIENTAL MOTOR SWITZERLAND AG

www.orientalmotor.ch

Switzerland Headquarters Badenerstraße 13

5200 Brugg AG, Switzerland Tel: 056–560 504 5 Fax: 056–560 504 7

ORIENTAL MOTOR (UK) LTD.

www.oriental-motor.co.uk

UK Headquarters

Unit 5, Faraday Office Park, Rankine Road, Basingstoke, Hampshire RG24 8AH, U.K. Tel: 01256–347 090 Fax: 01256–347 099

ORIENTAL MOTOR (FRANCE) SARL

www.orientalmotor.fr

France Headquarters 56, Rue des Hautes Pâtures

92000 Nanterre, France Tel: 01-478 697 50 Fax: 01-478 245 16

ORIENTAL MOTOR ITALIA s.r.l.

www.orientalmotor.it

Italy Headquarters

Via A. De Gasperi, 85 20017 Mazzo di Rho (MI), Italy Tel: 02–939 063 46 Fax: 02–939 063 48

ORIENTAL MOTOR CO., LTD.

www.orientalmotor.co.jp

Headquarters

4-8-1 Higashiueno Taito-ku, Tokyo 110-8536, Japan Tel: 03-674 403 61 Fax: 03-582 625 76

Other countries: www.orientalmotor.eu

Customer Center (Support in German & English)

00800-22 55 66 22* CA LL OM CC

info@orientalmotor.de

For more information please contact:

Mon-Thu: 08:00 - 17:30 CET Friday: 08:00 - 16:00 CET

* Free Call Europe